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The dilemma

The goal:  measuring the intensity and phase vs. time (or frequency)

Why?

The Spectrometer and Michelson Interferometer
1D Phase Retrieval

Autocorrelation
1D Phase Retrieval

Single-shot autocorrelation

The Autocorrelation and Spectrum
Ambiguities

Third-order Autocorrelation

Interferometric Autocorrelation

Measuring Ultrashort Laser Pulses I: 
Autocorrelation

E(t)

E(t–)



2

In order to measure 
an event in time,
you need a shorter one.

To study this event, you need a 
strobe light pulse that’s shorter.

But then, to measure the strobe light pulse, 
you need a detector whose response time is even shorter.

And so on…

So, how do you measure the shortest event?

Photograph taken by Harold Edgerton, MIT

The Dilemma
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Ultrashort laser pulses are the shortest 
technological events ever created by humans.

It’s routine to generate pulses shorter than 10-13 seconds in duration,
and researchers have generated pulses less than one fs (10-15 s) long.

Such pulses have many applications in physics, chemistry, biology, and 
engineering. 

You can measure any event—as long as you’ve got a pulse that’s 
shorter.

So how do you measure the pulse itself?

You must use the pulse to measure itself.

But that isn’t good enough.  It’s only as short as the pulse.  It’s not shorter.

Techniques based on using the pulse to measure itself are subtle.
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• To determine the temporal resolution of an experiment using it.

• To determine whether it can be made even shorter.

• To better understand the lasers that 
emit them and to verify models 
of ultrashort pulse generation.

• To better study media:  the better 
we know the light in and light
out, the better we know the 
medium we study with them.

• To use pulses of specific intensity
and phase vs. time to control
chemical reactions: “Coherent control.”

• To understand pulse-shaping efforts
for telecommunications, etc.

• Because it’s there.

Why measure an ultrashort laser pulse?

As a molecule dissociates,
its emission changes color
(i.e., the phase changes),
revealing much about the
molecular dynamics, not avail-
able from the mere spectrum, 
or even the intensity vs. time.

Excitation to excited state

Emission

Ground state

Excited 
state
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Linear or nonlinear
medium

Measuring the intensity and phase of the pulses into and out of a 
medium tells us as much as possible about the linear and nonlinear 
effects in the medium.

Studying Media by Measuring the 
Intensity and Phase of Light Pulses

With a linear medium, we learn the medium’s 
absorption coefficient and refractive index vs. 
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With a nonlinear-optical medium, we can 
learn about self-phase modulation, for example,
for which the theory is much more complex.
Indeed, theoretical models can be tested.

Eaton, et al., JQE 35, 451 (1999).
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A laser pulse has the time-domain electric field:

Intensity Temporal 
Phase

Equivalently, vs. frequency:

Spectral 
Phase

We must measure an ultrashort laser pulse’s
intensity and phase vs. time or frequency.

Spectrum

Knowledge of either the intensity and temporal phase or the spectrum
and spectral phase is sufficient to determine the pulse.

      0Re exp     i t i tI tE t

      0 0Re exp         iSE
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The instantaneous frequency:

Example: Linear chirp 
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We’d like to be able to measure,
not only linearly chirped pulses,
but also pulses with arbitrarily complex 
phases and frequencies vs. time.

The phase determines the pulse’s frequency 
(i.e., color) vs. time.

  0
  

dt
dt
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The spectrometer measures the spectrum, of course.  Wavelength varies
across the camera, and the spectrum can be measured for a single pulse.

Pulse Measurement in the Frequency Domain:  
The Spectrometer

Collimating
Mirror

“Czerny-Turner”
arrangement

Entrance 
Slit

Camera or
Linear Detector Array

Focusing
Mirror

Grating

There are numerous different arrangements for the 
optics of a spectrometer. This is just one example.

Broad-
band
pulse
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One-dimensional phase retrieval

˜ E    E t e i t dt






It’s more interesting than it appears to ask what information we lack
when we know only the pulse spectrum.

Clearly, what we lack is the spectral phase.  

Mathematically, this problem is called the 1D phase retrieval problem.

But can we somehow retrieve it?

There are still infinitely many solutions for the spectral phase.
The 1D Phase Retrieval Problem is unsolvable.

E.J. Akutowicz, Trans. Am. Math. Soc. 83, 179 (1956)
E.J. Akutowicz, Trans. Am. Math. Soc. 84, 234 (1957)

Obviously, we cannot retrieve the spectral phase from the mere spectrum. 

But what if we have some additional information?  
What if we know we have a pulse, which is, say, finite in duration?

S()  ˜ E ()
2

 ( )  phase[ ˜ E ()]and

Spectrum

Spectral phase

Recall:
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Pulse Measurement in the Time Domain: 
Power meters

Examples:  Photo-diodes, Photo-multipliers

Power meters are devices that generate current (i.e., moving electrons) 
in response to photons.

Power meters generally have very slow rise and fall times:  ~ 1 nanosecond.

As far as we’re concerned, they have infinitely slow responses.
They measure the time integral of the pulse intensity from – to +:

The detector output voltage is proportional to the pulse energy.
By themselves, power meters tell us little about a pulse.

2
detector ( )




 V E t dt

Another symbol
for a power meter:

power meter
power meter
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Pulse Measurement in the Time Domain:  
Varying the pulse delay

Since detectors are essentially infinitely slow, how do we make time-
domain measurements on or using ultrashort laser pulses?

We’ll delay a pulse in time. 

And how will we do that?

By simply moving a mirror!

Since light travels 300 µm per psec, 300 µm of mirror 
displacement yields a delay of 2 ps.  Controllable delay 
steps of less than 1 fs are not too difficult to implement.

Moving a mirror backward by a distance L yields a delay of:

  2 L /c
Do not forget the factor of 2!
Light must travel the extra distance 
to the mirror—and back!

Translation stage

Input pulse E(t)

E(t–)

Mirror

Output pulse
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We can also vary the delay using 
a mirror pair or corner cube.

Mirror pairs involve two
reflections and displace 
the return beam in space:
But out-of-plane tilt yields
a nonparallel return beam. Translation stage

Input pulse
E(t)

E(t–)

Mirrors
Output pulse

Corner cubes involve three reflections and also displace the return 
beam in space.  Even better, they always yield a parallel return beam:
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Pulse Measurement in the Time Domain:  
Creating copies of a pulse

The other piece of technology that we need is the Beam splitter.
A beam splitter is any device that divides a laser beam into two 
different beams, with different propagation directions, and with a 
specified power ratio.

The simplest beam splitter is simply a flat 
piece of glass, coated on one side with a thin 
metal coating that reflects a fraction of the 
power and transmits the rest.

A 50/50 beam splitter produces two
identical copies of the input pulse.

Quantum mechanically, beam splitters are
somewhat subtle (how do you ‘split’ a single photon?).  But for 
our purposes, there are always MANY photons per pulse, and 
these objects are well described by classical physics.

Beam 
splitter

Input
pulse

bE(t)

aE(t)

An ideal beam splitter absorbs 
zero power, so the splitting ratio 
adds up to 100%:  a2 + b2 = 1



Pulse Measurement in the Time Domain:  
The Michelson Interferometer

2 2 *( ) ( ) 2Re[ ( ) ( )] 



     E t E t E t E t dt

2( ) ( ) ( ) 



  MIV E t E t dt

2 *   ( ) 2 ( ) 2 Re ( ) ( ) 
 

 
    MIV E t dt E t E t dt

Measuring the interferogram VMI() is equivalent to measuring the spectrum.

First term:
 Pulse energy

(boring)

Second term:
Field autocorrelation

(maybe interesting, but…){
The Fourier Transform
of the field 
autocorrelation is 
just the spectrum!

Beam 
splitter

Input
pulse

Delay

Slow 
detector

Mirror

Mirror

E(t)

E(t–)

VMI( )

14

With these tools, we can build 
an interferometer!
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Okay, so how do we measure a pulse?

V. Wong & I. A. Walmsley, Opt. Lett. 19, 287-289 (1994)
I. A. Walmsley & V. Wong, J. Opt. Soc. Am B, 13, 2453-2463 (1996) 

Result: Using only time-independent, linear filters, complete 
characterization of a pulse is NOT possible with a slow detector.

Translation:  If you don't have a detector or modulator that is fast 
compared to the pulse width, you CANNOT measure the pulse 
intensity and phase using only linear measurements, such as a 
detector, interferometer, or a spectrometer.

We need a shorter event, and we don’t have one.

But we do have the pulse itself, which is a start.

And we can devise methods for the pulse to gate 
itself using optical nonlinearities.



16

Nonlinear optics for pulse measurement

SHG
crystallens

   2 2sinc 2blue redI I kL 

Last week: we discussed this nonlinear interaction:

Today: we generalize this, just a little bit:
SHG

crystallens

Beam 2
Beam 1

   
2 2

#1 1sinc 2blue redI I k L 

   
2 2

#2 2sinc 2blue redI I k L 

Because this arrangement also allows for this new possibility!

Here:                                               and the pulse delays of the 
two beams can be varied relative to each other.

     2
#1 #2 12sinc 2blue red redI I I k L 

12 #1 #2red red bluek k k k   
  



17

Pulse Measurement in the Time Domain:  
The Intensity Autocorrelator

Crossing beams in an SHG crystal, varying the delay between them,
and measuring the second-harmonic (SH) pulse energy vs. delay 
yields the Intensity Autocorrelation: 

Delay

Beam-splitter

Input
pulse

Mirror

E(t)

E(t–)Mirrors

The Intensity Autocorrelation: (2) ( ) ( ) ( ) 



 A I t I t dt

ESH (t, )  E(t)E(t   )
ISH (t, )  I(t)I(t  )

Aperture eliminates input pulses
and also any SH created by 
the individual input beams.

Slow 
detector

Vdet ( ) A(2) ( )

SHG
crystal

Lens
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Rectangle Pulse and Its Autocorrelation

t 

Pulse

1; t   p
FWHM 2  

0; t   p
FWHM 2






I t  

 A
FWH M   p

FWH M

Autocorrelation

A 2    
1


A

FWHM ;   A
FWHM  

0;   A
FWHM









 p
FWH M

 A
FWH M

The autocorrelation of a rectangle is a triangle.
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Gaussian Pulse and Its Autocorrelation

t 

exp 
2 ln2t
 p

FWHM








2











exp 
2 ln2
A

FWHM







2











I t  

 A
FW HM  1.41 p

FW HM

A 2    

 p
FW HM

 A
FWH M

Pulse Autocorrelation

The autocorrelation of a Gaussian is a Gaussian.
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t 

Sech2 Pulse and Its Autocorrelation

sech 2 1.7627t
t p

FWHM









 3

sinh2 2.7196
A

FWHM






2.7196
A

FWHM coth
2.7196
A

FWHM






1









I t  

 A
FWH M  1.54  p

FWH M

A 2    

 p
FW HM

 A
FW HM

Since theoretical models for ideal ultrafast lasers often predict sech2

pulse shapes, people used to (and some still do) simply divide the 
autocorrelation width by 1.54 and call it the pulse width.  Even when 
the autocorrelation is Gaussian…

Pulse Autocorrelation

The autocorrelation of a sech2 is complicated.
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Sech2 pulse vs Gaussian pulse

-30 -20 -10 0 10 20 30
0

0.5

1

the autocorrelation of a 
10 fs sech2 pulse the autocorrelation of an 

11 fs Gaussian pulse

If there is any noise in the measurement, it can be 
difficult to tell the difference between these two curves.
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Lorentzian Pulse and Its Autocorrelation

Pulse Autocorrelation

t 

1
1 2t  p

FWHM 2
1

1 2 A
FWHM 2

I t  

 A
FWHM  2.0  p

FWH M

A 2    

 p
FW HM

 A
FW HM
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A Double Pulse and Its Autocorrelation

Pulse Autocorrelation

t

I t   I0(t)  I0 (t  sep)
A 2     A0

2    sep 
2A0

2     A0
2    sep 

sep

A0
(2)    I0(t) I0( t  ) dtwhere:



sep
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Practical Issues in Autocorrelation
• Group-velocity mismatch must be negligible, or the measurement
will be distorted.  Equivalently, the phase-matching bandwidth must
be sufficient.  So very thin crystals (<100 µm!) must be used.  
This reduces the efficiency and hence the sensitivity of the device.

• Conversion efficiency must be kept low, or distortions due 
to “depletion” of input light fields will occur.

• The beam spatial overlap must be maintained as the delay is scanned.  

• Minimal amounts of glass must be used in the beam before the crystal
to minimize the GVD introduced into the pulse by the autocorrelator.

• It’s easy to introduce systematic error.  The only feedback on the 
measurement quality is that it should be maximal at  = 0 and
symmetrical in delay: 

A(2)()  A(2)() I(t)I(t ) dt  I( t  )I( t ) d t because

t  t  
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Multi-shot Autocorrelation and “Wings”
The delay is scanned over many pulses, averaging over any variations
in the pulse shape from pulse to pulse.  So results can be misleading.

Infinite Train of Pulses Autocorrelation

Imagine a train of pulses, each of which is a double pulse.
Suppose the double-pulse separation varies:


The locations of the side pulses in 
the autocorrelation vary from pulse
to pulse.  The result is “wings.”

“Wings”

t
larger 

separation
smaller

separation
average 

separation

Wings also result if each pulse in the train has varying structure.
And wings can result if each pulse in the train has the same structure!
In this case, the wings actually yield the pulse width, and the central 
spike is called the “coherence spike.” Be careful with such traces.

“Coherence  
spike”
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Autocorrelations of more complex intensities

-80 -60 -40 -20 0 20 40 60 80

Autocorrelation

Autocorrelation
Ambiguous Autocorrelation

Delay
-40 -30 -20 -10 0 10 20 30 40

Intensity
Intensity
Ambiguous Intensity

Time

Autocorrelations nearly always have considerably less structure than the
corresponding intensity.

An autocorrelation typically corresponds to more than one intensity.  
Thus the autocorrelation does not uniquely determine the intensity.
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-80 -60 -40 -20 0 20 40 60 80

Intensity
Ambiguous Intensity

Time

Intensity

-150 -100 -50 0 50 100 150

Autocorrelation

Autocorrelation
Ambig Autocor
Gaussian

Delay

Even nice autocorrelations have ambiguities

These complex intensities have nearly 
Gaussian autocorrelations.

Conclusions drawn from an autocorrelation can be unreliable.
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Retrieving the Intensity from the Intensity Autocorrelation 
is also equivalent to the 1D Phase-Retrieval Problem!

Applying the Autocorrelation Theorem:

2(2){ ( )} { ( )}A I t Y Y

Thus, the autocorrelation yields only the magnitude of the Fourier 
Transform of the Intensity.  It says nothing about its phase!  It’s the  
1D Phase-Retrieval Problem again!

We do have additional information:  I(t) is always positive.  The 
positivity constraint reduces the ambiguities dramatically, but still, 
it rarely eliminates them all.

The Intensity Autocorrelation is not sufficient to determine the 
intensity of the pulse vs. time.

A(2)( )  I(t)I(t   ) dt
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Pulse Measurement in Both Domains:
Combining the Spectrum and Autocorrelation

Perhaps the combined information of the autocorrelation and the spectrum
could determine the pulse intensity and phase.

This idea has been called:  “Temporal Information Via Intensity (TIVI)”

J. Peatross and A. Rundquist, J. Opt. Soc. Am B 15, 216-222 (1998)

It involves an iterative algorithm to find an intensity consistent with the
autocorrelation.  Then it involves another iterative algorithm to find the
temporal and spectral phases consistent with the intensity and spectrum.

Neither step has a unique solution, so this doesn’t work.
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Ambiguities in TIVI:  Pulses with the 
Same Autocorrelation and Spectrum

Pulse #1 Pulse #2

Spectra and spectral phases
for Pulses #1 and #2

Autocorrelations
for Pulses #1 and #2

Intensity

Intensity

Phase
Phase

FWHM = 24fs FWHM= 21fs

#1

#2

Chung and 
Weiner, 
IEEE JSTQE,
2001.

Spectra

These pulses—especially the phases—are very different.
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Ambiguities in TIVI: More Pulses with the 
Same Autocorrelation and Spectrum

Pulse #3 Pulse #4

Spectra and spectral phases
for Pulses #3 and #4

Autocorrelations
for Pulses #3 and #4

Intensity

Intensity

Phase

Phase
FWHM = 37fs FWHM= 28fs

#4#3

Chung and 
Weiner, 
IEEE JSTQE, 
2001.

Despite having
very different 
durations, these 
pulses have
the same auto-
correlation and 
spectrum!

There’s no way to know all the pulses having a given 
autocorrelation and spectrum.

Spectra
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Third-Order Autocorrelation

Esig
PG t , E t E t   2Polarization

Gating (PG)


0      

k 0 


k 1 


k 2 


k 2



 (3)



k 1



k 2

Esig
SD t,  E t 2E t  Self-diffrac-

tion (SD) 
 (3)



k 2



k 1



0      

k 0  2


k 1 


k 2

Esig
TG t ,  

Esig
PG t , 

Esig
SD t, 






Transient
Grating (TG) 

 (3)

k 2



k 1



k 3 

0      

k 0 


k 1 


k 2 


k 3

Esig
THG t,  E t 2E t  

Third-har-
monic gen-
eration (THG)



 (3)


k 2



k 1



0  3

k 0  2


k 1 


k 2

Third-order nonlinear-optical effects pro-
vide the 3rd-order intensity autocorrelation:

A(3)( )  I2(t)I(t   ) dt





Note the 2

The third-order autocorrelation is not symmetrical, so it yields slightly 
more information, but not the full pulse.  Third-order effects are weaker, 
so it’s less sensitive and is used only for amplified pulses (> 1 µJ).
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When a shorter reference pulse is available:  
The Intensity Cross-Correlation

ESF (t, )  E(t)Eg(t  )
ISF (t, )  I(t)Ig (t  )

The Intensity Cross-correlation:

Delay

Unknown pulse
Slow 
detector

E(t)

Eg(t–)
Vdet ( ) C( )

SFG
crystal

Lens
Reference 
pulse

C()  I(t) Ig (t ) dt






If a shorter reference pulse is available (it need not be known), then it 
can be used to measure the unknown pulse.  In this case, we perform 
sum-frequency generation, and measure the energy vs. delay.

If the reference pulse Ig(t) is much shorter than the unknown 
pulse, then the intensity cross-correlation fully determines 
the unknown pulse intensity. 
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Pulse Measurement in the Time Domain: 
The Interferometric Autocorrelator

What if we use a collinear beam geometry, and allow the autocorrelator
signal light to interfere with the SHG from each individual beam?

Developed by 
J-C Diels

IA(2)( )  [E(t)  E(t   )]2 2
dt






IA(2)( )  E2 (t)  E2 (t  )  2E(t )E(t   )

2
dt






The usual
Autocor-
relation
term

New
terms

Also called the “Fringe-Resolved Autocorrelation”

Filter Slow 
detector

SHG
crystal

E(t )  E(t  )
[E(t) E(t  )]2

Lens

Beam-
splitter

Input
pulse

Delay

Mirror

Mirror

E(t)

E(t–)

Michelson 
Interferometer

Diels and Rudolph, 
Ultrashort Laser 
Pulse Phenomena, 
Academic Press, 
1996.
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Interferometric Autocorrelation Math
The measured intensity vs. delay is:

IA(2)( )  E2 (t)  E2 (t   )  2E( t)E(t   )  E*2 (t)  E*2( t  )  2E* (t)E* (t  ) dt






IA(2)( )  E2(t)
2
 E2(t) E*2(t   )  2E2(t) E*(t) E*(t   ) 






Multiplying this out:

E2( t  ) E*2(t)  E2 (t  )
2
 2E2(t  )E* (t)E* (t  ) 

2E(t)E(t  )E*2(t)  2E(t)E(t   )E*2 (t  ) 4 E(t) 2 E(t  ) 2dt

 I2 (t)  E2 (t)E*2 (t  )  2 I(t)E(t)E* (t   ) 





E2( t  ) E*2( t)  I2 (t   )  2 I(t   )E*(t)E(t   ) 

2 I(t )E(t   )E*( t)  2I(t  )E(t)E* (t  ) 4 I(t)I(t   )dt

where I(t)  E(t) 2
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The Interferometric Autocorrelation is the
sum of four different quantities.

 I2(t)  I2(t  ) dt





 4 I(t)I(t  )





 dt

 E2( t)E2*(t  ) dt  c.c.






 2 I(t)  I(t   ) E(t)E* (t  ) dt  c.c






Constant (uninteresting)

Sum-of-intensities-weighted 
“interferogram” of E(t) 
(oscillates at  in delay)

Intensity autocorrelation

Interferogram of the second harmonic;
equivalent to the spectrum of the SH 
(oscillates at 2 in delay)

The interferometric autocorrelation simply combines several measures
of the pulse into one (admittedly complex) trace. Conveniently, however,
they occur with different oscillation frequencies:  0, , and 2.
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Interferometric Autocorrelation and Stabilization

Interferometric Autocorrelation Traces for a Flat-phase Gaussian pulse:

Pulse
length

Fortunately, it’s not always necessary to resolve the fringes.

With stabilization Without stabilization

To resolve the  and 2 fringes, which are spaced by only  and /2, 
we must actively stabilize the apparatus to cancel out vibrations, which 
would otherwise perturb the delay by many .

C. Rulliere, 
Femtosecond 
Laser Pulses, 

Springer, 
1998.
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Interferometric Autocorrelation:  Examples
The extent of the fringes (at  and ) indicates the approximate width of
the interferogram, which is the coherence time.  If it’s the same as the 
width of the the low-frequency component, which is the intensity 
autocorrelation, then the pulse is near-Fourier-transform limited. 

Unchirped pulse (short)

~ Coherence
time

~ Pulse
length

Chirped pulse (long)

~ Coherence
time

~ Pulse
length

These 
pulses
have 

identical
spectra,

and hence
identical

coherence 
times.

The interferometric autocorrelation nicely reveals the approximate pulse
length and coherence time, and, in particular, their relative values.

Solid black lines have been added.
They trace the intensity autocorrelation 

component (for reference).

C. Rulliere, 
Femtosecond 
Laser Pulses, 

Springer, 
1998.
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Interferometric Autocorrelation: 
Practical Details

A good check on the interferometric autocorrelation is that it should 
be symmetrical, and the peak-to-background ratio should be 8.

This device is difficult to align; there are five very sensitive degrees of
freedom in aligning two collinear pulses.  

Dispersion in each arm must be the same, so it is necessary to  
insert a compensator plate in one arm.

The typical ultrashort pulse is still many wavelengths long.  
So many fringes must typically be measured:  data sets are large,
and scans are slow.

Like the intensity autocorrelation, it must be curve-fit to an assumed
pulse shape.
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Does the interferometric autocorrelation yield 
the pulse intensity and phase?

No. The claim has been made that the Interferometric Autocorrelation, 
combined with the pulse interferogram (i.e., the spectrum), could do so 
(except for the direction of time).

Naganuma, IEEE J. Quant. Electron. 25, 1225-1233 (1989).

But the required iterative algorithm rarely converges.

The fact is that the interferometric autocorrelation yields little more 
information than the autocorrelation and spectrum.

We shouldn’t expect it to yield the full pulse intensity and phase.  Indeed, 
very different pulses have very similar interferometric autocorrelations.
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Pulses with Very Similar Interferometric Autocorrelations

Pulse #1
Intensity

Phase

FWHM = 24fs

Pulse #2

Intensity

Phase

FWHM= 21fs

Without trying to find ambiguities, we can just try Pulses #1 and #2:

Despite the very 
different pulses, 
these traces are 
nearly identical!

Chung and 
Weiner, 
IEEE JSTQE, 
2001.

Interferometric Autocorrelations for Pulses #1 and #2

Difference:

#1 and #2
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Pulses with Very Similar Interferometric Autocorrelations

Chung and 
Weiner, 
IEEE JSTQE, 
2001.

It’s even harder to distinguish the traces when the pulses are shorter,
and there are fewer fringes. Consider Pulses #1 and #2, but 1/5 as long:

Interferometric Autocorrelations for Shorter Pulses #1 and #2

#1 and #2

Pulse #1
Intensity

Phase

FWHM=4.8fs

-20                     -10                            0                         10                         20

Pulse #2

Intensity

Phase

FWHM=4.2fs

-20                     -10                            0                         10                         20

In practice, it would be 
virtually impossible to 
distinguish these.

Difference:
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More Pulses with Similar Interferometric Autocorrelations

Chung and 
Weiner, 
IEEE JSTQE,
2001.

Without trying to find ambiguities, we can try Pulses #3 and #4:

Intensity

Phase

FWHM = 37fs

Pulse #3

Intensity

Phase
FWHM= 28fs

Pulse #4

Interferometric Autocorrelations for Pulses #3 and #4

Difference:

#3 and #4

Despite very different pulse 
lengths, these pulses have 
nearly identical IAs.
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More Pulses with Similar Interferometric Autocorrelations
Shortening Pulses #3 and #4 also yields very similar IA traces:

Interferometric Autocorrelations for Shorter Pulses #3 and #4

Chung and 
Weiner, 
IEEE JSTQE,
2001.

Difference:

Shortened
pulse (1/5
as long)

#3 and #4

It is dangerous to derive a pulse length from the IA.

Intensity

Phase

FWHM=7.4fs

Pulse #3

-40                     -20                            0                         20                         40

Intensity

Phase
FWHM=5.6fs

Pulse #4

-40                     -20                            0                         20                         40
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So what is the solution?

How do we characterize short pulses?

The answer is amphibious. Next lecture…


