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Reference:  Hermann Haus, “Short pulse generation,” 
in Compact Sources of Ultrashort Pulses, Irl N. Duling, ed. 
(Cambridge University Press, 1995).
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Including dispersion and 
nonlinearity: The Landau-
Ginzberg Equation
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Theory of Ultrashort Laser Pulse Generation
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"The Laser is numbered among the most 
miraculous gifts of nature and lends itself 
to a variety of applications."

- Pliny (the elder) Natural History XXII, 49 (1st Century AD)

An actual quotation

“The number of uses of compounds made with laser is
immeasurable," said Pliny. Among them were the following:
diuretic, healing ointment for sores, antidote for wounds caused by
poison-tipped weapons, snakebites, and scorpion stings, for
shrinking corns and carbuncles, healing dog bites, soothing
chilblains, alleviating coughing and wheezing, and as a cure for
gout, cramps, pleurisy, and tetanus. 

silphium laciniatum, a modern relative of laser.
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The burning question: gaussian or sech2?
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After all this talk about Gaussian pulses… what does Ti:sapphire really produce?
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Recall that many 
frequencies (“modes”) 
oscillate simultaneously in a 
laser, and when their 
phases are locked, an 
ultrashort pulse results.

Locking the modes of a 
laser requires nonlinear 
optics. There are numerous 
strategies.

Sum of ten modes w/ random phase

Sum of ten modes with 
the same relative phase

multiple oscillating cavity 
modes in an inhomogeneous

gain medium

q

laser 
gain 

profile

q+1q1

losses

q q+2 q+3

possible cavity modes

Mode-locking yields ultrashort pulses
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We insert something into the laser cavity that sinusoidally modulates 
the amplitude of the pulse.

 mode competition couples each mode to modulation sidebands
 eventually, all the modes are coupled and phase-locked

Active Mode Locking

Two categories 
of Mode Locking

We insert something into the laser 
cavity that favors high intensities.

 strong maxima will grow stronger 
at the expense of weaker ones
 eventually, all of the energy is 
concentrated in one packet

Passive Mode Locking
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If E(t) = sinc2(t)exp(i0t):

Multiplication by cos(Mt) introduces side-bands.
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The Modulation Theorem:  The 
Fourier Transform of E(t)cos(Mt)
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Applying a voltage to certain crystalline materials changes the 
refractive indices and introduces birefringence. 

A few kV can turn a crystal into a half- or quarter-wave plate.

V

If V = 0, the pulse 
polarization doesn’t 
change.

If V = Vp, the pulse 
polarization switches to its 
orthogonal state.

Applying a sinusoidal voltage yields sinusoidal modulation to the 
beam’s amplitude. Or, use it without a polarizer to simply introduce 
a phase modulation, which sinusoidally shifts the modes into and 
out of resonance with the actual cavity modes.

“Pockels cell”

(voltage may be 
transverse or 
longitudinal)

Polarizer

One option for active mode-locking: 
the electro-optic modulator
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Such diffraction can be quite strong:  ~70%.  Sinusoidally modulating 
the acoustic wave amplitude yields sinusoidal modulation of the 
transmitted beam.

Quartz Diffracted
Beam (Loss)



Acoustic 
transducer

Pressure, density, and 
refractive-index variations 
due to acoustic wave

Input
beam

Here, an acoustic wave induces sinusoidal density, and hence 
sinusoidal refractive-index, variations in a medium. This will diffract 
away some of a light wave’s energy.


Output
beam

2nd option for active mode-locking: 
the acousto-optic modulator



For mode-locking, we adjust M
so that M = mode spacing
(which is not what is shown in 
this diagram).

M = 2/cavity round-trip time
= 2/(2L/c) = c/L

Under this condition, each mode competes for gain with adjacent modes.
The most efficient operation is for phases to lock, resulting in global 
phase locking.
This is described by a system of N coupled equations: En  En+1, En-1

modulator transmission

Time

cos(Mt)

In the frequency domain, a modulator introduces side-bands of every laser 
mode (although, this diagram only shows the side bands for one of them).

0M0M

Frequency

0

cavity
modes

c/L

Active mode-
locking
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Lasers have a mode spacing:





Let the zeroth mode be at the center of the gain, 0. The nth mode 
frequency is then:

0

0n Mn    where n = …, -1, 0, 1, …

Gain profile and 
resulting laser modes

Modeling laser modes 
and gain
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Let an be the amplitude of the nth mode and assume a Lorentzian gain 
profile, G(n). Then, the amplitude increases after one round trip 
according to:

and where the superscript (k) indicates the round trip number.

gwhere      = gain bandwidth

g



A modulator multiplies the laser light (i.e., each mode) by M[1cos(Mt)]

   1 11 1
2 2

M Mo M
n

i n t i n ti t in tMa e e e e         

     1 11 cos( ) exp( ) 1 exp( )
2 2

o M o M
M n M M n

i n t i n tM t a e M i t i t a e              

An amplitude modulator uses the electro-optic or acousto-optic effect 
to deliberately cause losses at the laser round-trip frequency, M.

Notice that this spreads the energy from the nth to the (n+1)st and 
(n-1)st modes. 

Modeling an amplitude modulator
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Reminder: the superscript indicates the kth round trip. 
The subscript n is the mode index: n = 0 + n M

Including the passive loss,  , we can write this as:



12

Solve for the steady-state solution
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In steady state,    1k k
n na a 

Also, the finite difference becomes a second derivative when the 
modes are many and closely spaced:

where, in this 
continuous limit,

( ) ( )k
na a 

Mn where:
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Approximate: modes near the center of the Lorentzian gain, so

thus:

which results in:
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Solve for the steady-state solution
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This differential equation 
has the solution:

with the constraints:

  2 2 /2a Ae   
Focus on the lowest-
order ( = 1) mode:

Active sinusoidal modulation of the laser modes at the 
round-trip frequency produces a Gaussian spectrum!

(Hermite Gaussians)
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Thus we have:



AM mode locking: pulse duration
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The solution:

with the constraints:
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The parameter  determines the spectral bandwidth, which 
in turn determines the shortest possible pulse duration:

In other words, the spectral bandwidth 
of the mode-locked pulse varies as 
the square root of the gain bandwidth.

AM mode-locking does not exploit the full 
bandwidth of an inhomogeneous medium!
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Recalling that multiplication by -2 in the frequency domain is 
just a second derivative in the time domain (and vice versa).

So this:
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which (in the continuous steady-state limit) has the solution:

This makes sense because Hermite-Gaussians are their own 
Fourier transforms.

The time-domain will prove to be better for modeling passive 
mode-locking.

becomes this:
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Fourier transforming to the time domain
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FM mode-locking
produce a phase shift per round trip
implementation: electro-optic modulator
similar results in terms of steady-state pulse duration

Synchronous pumping
gain medium is pumped with a pulsed laser, at a rate of 1 pulse per 

round trip
requires an actively mode-locked laser to pump your laser ($$)
requires the two cavity lengths to be accurately matched
useful for converting long AM pulses into short AM pulses

(e.g., 150 psec argon-ion pulses  sub-psec dye laser pulses)

Additive-pulse or coupled-cavity mode-locking
external cavity that feeds pulses back into main cavity 

synchronously
requires two cavity lengths to be matched
can be used to form sub-100-fsec pulses

Other active mode-locking techniques



Saturable absorption:
• absorption saturates during the passage of the pulse
• leading edge is selectively eroded

Saturable gain:
• gain saturates during the passage of the pulse
• leading edge is selectively amplified

loss
gain

gain > loss

time

Slow absorber

gain

time

loss

gain > loss

Fast absorber

Passive mode-locking



If a pulse experiences additional focusing due to the Kerr lens 
nonlinearity, and we align the laser for this extra focusing, then a 
high-intensity beam will have better overlap with the gain medium.

High-intensity pulse

Low-intensity pulse

Ti:Sapph

Mirror

Additional focusing 
optics can arrange 
for perfect overlap of 
the high-intensity 
beam back in the 
Ti:Sapphire crystal.
But not the low-
intensity beam!

This is a type of saturable loss, with the same 
saturation behavior we’ve seen before:

1
1 sat

I
I I I





Kerr lensing is a type of saturable absorber
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Neglect gain saturation, and 
model a fast saturable absorber:
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Including saturable absorption in the mode-amplitude equation
(and removing the active mode-locking term proportional to M):

Here, we 
lumped 
the constant 
loss into ℓ
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 where:

The transmission through a fast saturable absorber
of length La:

Saturation
intensity

Intensity

Saturable-absorber mode-locking
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In steady state, this equation has the solution:

where the conditions on  and A0 are:

2 2 0
g
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The sech pulse shape

FWHM = 2.62 

2
0

1 2

g

g
A







Note: the pulse duration is now 
proportional to the inverse of the 
gain bandwidth. Passive mode 
locking produces shorter pulses!
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After propagating a distance Ld, the amplitude becomes:

1
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where:

Inverse-Fourier-transforming:

   2 21 1exp 0, 1 0,
2 2d dik L a ik L a              

   

Ignore the constant phase and vg, and approximate the 2nd-order phase:

The Master Equation: including GVD
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The master equation (assuming small effects) becomes:
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  

In steady state:                                      where  is the phase shift per round trip.

This important equation is called the Landau-Ginzberg Equation.

   1 ( )k ka a i a t  

The Master Equation (continued): 
including the Kerr effect

2nwhere
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It has an 
analytic 
solution:

where:

The complex exponent yields chirp.

Solution to the Master Equation
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2
g

nD D
g




The pulse length and chirp parameter
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The spectral width vs. dispersion for various SPM values.

A broader spectrum is possible if some positive chirp is acceptable.

The spectral width
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Recall the master equation:

If you were interested in light pulses not propagating inside a laser cavity, 
but in a medium outside the laser, then you would change this to a 
continuous differential equation (rather than a difference equation with a 
discrete round-trip index k).

You would also ignore gain and loss (both linear loss and saturable loss).

The Nonlinear Schrodinger Equation

2
2

2

a iD i a a
z t


  

    
D – GVD parameter
 – Kerr nonlinearity

Then you would have the Nonlinear Schrodinger Equation:
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The solution to the nonlinear Shrodinger equation is:

where:

Note that /D, must be negative, or no solution exists.

But note that, despite dispersion, the pulse length and shape 
do not vary with distance: this predicts solitons

The Nonlinear 
Schrodinger 

Equation (NLSE)
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Evolution of a soliton from a square wave

Solitons are surprisingly robust. A perturbed 
soliton will evolve back to its unperturbed state 
as long as the perturbation is not too large.
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So then do all mode-locked lasers 
produce sech(t) pulses?

The Master Equation assumed that the dispersion is uniform throughout 
the laser cavity, so that the pulse is always experiencing a certain 
(constant) GVD as it propagates through one full round-trip.

But that is far from 
being true.

Ti: sapphire crystal: positive GDD

between the prisms: 
negative GDD

pump

 
2

2
2

a iD i a a z
z t


  

    
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Distributed dispersion 
within the laser cavity

gr
ou

p 
ve

lo
ci

ty
 d

is
pe

rs
io

n,
 D

distance within 
the laser cavity

one round trip

gain medium

the space between 
the prisms

So the dispersion D should depend on position within the laser cavity, 
D = D(z).  In principle, so should the Kerr nonlinearity, = (z) since 
this nonlinearity only exists inside the gain medium.
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Perturbed nonlinear Schrodinger equation

     
2

2
2

a iD z i z a a z
z t


  

    

Q. Quraishi et al., Phys. Rev. Lett. 94, 243904 (2005)

(z) = zero except inside the Ti:sapphire crystal
D(z) = cavity dispersion map (positive inside the 

crystal, negative between the prisms)
}

The pulse experiences 
these perturbations 
periodically, once per 
cavity round-trip.

Solution: requires numerical 
integration except in the 
asymptotic limit (infinite |D|)

Result: the pulse shape is 
not invariant!  It varies during 
the round trip.  But it is still 
stable at any particular 
location in the laser.

one cavity 
round trip

“Dispersion-managed solitons”
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In real lasers, the pulse shape is complicated

Y. Chen et al., J. Opt. Soc Am. B 16, 1999 (1999)

Dispersion management can produce many different pulse shapes.

• small dispersion swing: sech pulses
• moderate dispersion: Gaussian pulses
• large dispersion: neither; the result 
depends sensitively on gain filtering

one round trip

Also:
The perturbed NLSE neglects gain 
and saturable loss, both of which are 
required for mode-locked operation.

Bottom line: it’s complicated.

In principle, both would also need to 
be included in a distributed way:

g = g(z) and     = (z)


