Theory of Ultrashort Laser Pulse Generation

Reference: Hermann Haus, "Short pulse generation," in *Compact Sources of Ultrashort Pulses*, Irl N. Duling, ed. (Cambridge University Press, 1995).

An actual quotation

"The Laser is numbered among the most miraculous gifts of nature and lends itself to a variety of applications."

- Pliny (the elder) Natural History XXII, 49 (1st Century AD)

"The number of uses of compounds made with laser is immeasurable," said Pliny. Among them were the following: diuretic, healing ointment for sores, antidote for wounds caused by poison-tipped weapons, snakebites, and scorpion stings, for shrinking corns and carbuncles, healing dog bites, soothing chilblains, alleviating coughing and wheezing, and as a cure for gout, cramps, pleurisy, and tetanus.

silphium laciniatum, a modern relative of laser.

The burning question: gaussian or sech²?

After all this talk about Gaussian pulses... what does Ti:sapphire really produce?

Mode-locking yields ultrashort pulses

Recall that many frequencies ("modes") oscillate simultaneously in a laser, and when their phases are locked, an ultrashort pulse results.

Locking the modes of a laser requires nonlinear optics. There are numerous strategies.

Sum of ten modes with the same relative phase

Sum of ten modes w/ random phase

Two categories of Mode Locking

Active Mode Locking

modulator transmission $\cos(\omega_M t)$ time

We insert something into the laser cavity that sinusoidally modulates the amplitude of the pulse.

 \Rightarrow mode competition couples each mode to modulation sidebands \Rightarrow eventually, all the modes are coupled and phase-locked

Passive Mode Locking

We insert something into the laser cavity that favors high intensities.

 \Rightarrow strong maxima will grow stronger at the expense of weaker ones \Rightarrow eventually, all of the energy is concentrated in one packet

The Modulation Theorem: The Fourier Transform of E(t)cos(ω_Mt)

Multiplication by $\cos(\omega_M t)$ introduces side-bands.

One option for active mode-locking: the electro-optic modulator

Applying a voltage to certain crystalline materials changes the refractive indices and introduces birefringence.

A few kV can turn a crystal into a half- or quarter-wave plate.

Applying a sinusoidal voltage yields sinusoidal modulation to the beam's amplitude. Or, use it without a polarizer to simply introduce a phase modulation, which sinusoidally shifts the modes into and out of resonance with the actual cavity modes.

2nd option for active mode-locking: the acousto-optic modulator

Here, an acoustic wave induces sinusoidal density, and hence sinusoidal refractive-index, variations in a medium. This will diffract away some of a light wave's energy.

Such diffraction can be quite strong: ~70%. Sinusoidally modulating the acoustic wave amplitude yields sinusoidal modulation of the transmitted beam.

Active modelocking

In the frequency domain, a modulator introduces side-bands of every laser mode (although, this diagram only shows the side bands for one of them).

For mode-locking, we adjust ω_M so that ω_M = mode spacing (which is not what is shown in this diagram).

 $\omega_M = 2\pi/\text{cavity round-trip time}$ = $2\pi/(2L/c) = \pi c/L$

Under this condition, each mode competes for gain with adjacent modes. The most efficient operation is for phases to lock, resulting in global phase locking.

This is described by a system of N coupled equations: $E_n \Leftrightarrow E_{n+1}$, E_{n-1}

Modeling laser modes and gain

Lasers have a mode spacing:

$$\omega_{M} = \frac{2\pi}{T_{R}} = \frac{\pi c}{L}$$

Let the zeroth mode be at the center of the gain, ω_0 . The *n*th mode frequency is then:

$$\omega_n = \omega_0 + n \,\omega_M$$
 where $n = ..., -1, 0, 1, ...$

Let a_n be the amplitude of the n^{th} mode and assume a Lorentzian gain profile, G(n). Then, the amplitude increases after one round trip according to:

$$a_n^{(k+1)} = G(n) a_n^{(k)} = \left[1 + \frac{g}{1 + (n\omega_M)^2 / \Omega_g^2}\right] a_n^{(k)} \text{ where } \Omega_g = \text{gain bandwidth}$$

and where the superscript (k) indicates the round trip number.

Modeling an amplitude modulator

An amplitude modulator uses the electro-optic or acousto-optic effect to deliberately cause losses at the laser round-trip frequency, ω_M .

A modulator multiplies the laser light (i.e., each mode) by $M[1-\cos(\omega_M t)]$

$$M \left[1 - \cos(\omega_{M} t) \right] a_{n} e^{i(\omega_{0} + n\omega_{M})t} = M \left[-\frac{1}{2} \exp(-i\omega_{M} t) + 1 - \frac{1}{2} \exp(i\omega_{M} t) \right] a_{n} e^{i(\omega_{0} + n\omega_{M})t}$$
$$= -M a_{n} e^{i\omega_{0}t} \left[\frac{1}{2} e^{i(n-1)\omega_{M}t} - e^{in\omega_{M}t} + \frac{1}{2} e^{i(n+1)\omega_{M}t} \right]$$

Notice that this spreads the energy from the n^{th} to the $(n+1)^{st}$ and $(n-1)^{st}$ modes. Including the passive loss, ℓ , we can write this as:

$$a_n^{(k+1)} = a_n^{(k)} + g\left(1 + \frac{\left(n\omega_M\right)^2}{\Omega_g^2}\right)^{-1} a_n^{(k)} - \ell a_n^{(k)} + \frac{M}{2}\left(a_{n+1}^{(k)} - 2a_n^{(k)} + a_{n-1}^{(k)}\right)$$

Reminder: the superscript indicates the k^{th} round trip. The subscript *n* is the mode index: $\omega_n = \omega_0 + n \omega_M$

Solve for the steady-state solution

Approximate: modes near the center of the Lorentzian gain, so $n\omega_M \ll \Omega_g$

thus:
$$\frac{g}{1+(n\omega_M)^2/\Omega_g^2} \approx g \left[1-\frac{(n\omega_M)^2}{\Omega_g^2} \right]$$

which results in:

$$a_n^{(k+1)} = a_n^{(k)} + g\left(1 - \frac{\left(n\omega_M\right)^2}{\Omega_g^2}\right) a_n^{(k)} - \ell a_n^{(k)} + \frac{M}{2}\left(a_{n+1}^{(k)} - 2a_n^{(k)} + a_{n-1}^{(k)}\right)$$

In steady state, $a_n^{(k+1)} = a_n^{(k)}$

Also, the finite difference becomes a second derivative when the modes are many and closely spaced:

> where, in this $a_{n+1}^{(k)} - 2a_n^{(k)} + a_{n-1}^{(k)} \rightarrow \omega_M^2 \frac{d^2}{d\omega^2} a(\omega)$ continuous limit,

$$a_n^{(k)} \to a(\omega)$$

where: $\omega = n \omega_M$

Solve for the steady-state solution

Thus we have:

$$0 = \left[g\left(1 - \frac{\omega^2}{\Omega_g^2}\right) - \ell + \frac{M\omega_M^2}{2}\frac{d^2}{d\omega^2}\right]a(\omega)$$

This differential equation has the solution:

$$a(\omega) = H_{\nu}(\omega\tau)e^{-\omega^2\tau^2/2}$$
 (Hermite Gaussians)

with the constraints:

$$\frac{1}{\tau^4} = \frac{M\omega_M^2 \Omega_g^2}{2g} \qquad g - \ell = M\omega_M^2 \tau^2 \left(v + \frac{1}{2}\right)$$

Focus on the lowestorder (v = 1) mode: $a(\omega) = Ae^{-\omega^2 \tau^2/2}$

Active sinusoidal modulation of the laser modes at the round-trip frequency produces a Gaussian spectrum!

AM mode locking: pulse duration

The solution:
$$a(\omega) = H_{\nu}(\omega\tau)e^{-\omega^2\tau^2/2}$$

with the constraints:

$$\frac{1}{\tau^4} = \frac{M\omega_M^2 \Omega_g^2}{2g} \qquad g - \ell = M\omega_M^2 \tau^2 \left(v + \frac{1}{2}\right)$$

The parameter τ determines the spectral bandwidth, which in turn determines the shortest possible pulse duration:

$$\tau = \frac{1}{\sqrt{\Omega_g}} \cdot \sqrt[4]{\frac{2g}{M\omega_M^2}}$$

In other words, the spectral bandwidth of the mode-locked pulse varies as the square root of the gain bandwidth.

AM mode-locking does not exploit the full bandwidth of an inhomogeneous medium!

Fourier transforming to the time domain

Recalling that multiplication by $-\omega^2$ in the frequency domain is just a second derivative in the time domain (and vice versa).

So this:
$$a_n^{(k+1)} - a_n^{(k)} = \left[g\left(1 - \frac{\omega^2}{\Omega_g^2}\right) - \ell + \frac{M\omega_M^2}{2}\frac{d^2}{d\omega^2}\right]a(\omega)$$

becomes this: $a^{(k+1)}(t) - a^{(k)}(t) = \left[g\left(1 + \frac{1}{\Omega_g^2}\frac{d^2}{dt^2}\right) - \ell - \frac{M}{2}\omega_M^2t^2\right]a^{(k)}(t)$

which (in the continuous steady-state limit) has the solution:

$$a(t) = \frac{(i)^{\nu}}{\sqrt{2\pi}} H_{\nu}\left(\frac{t}{\tau}\right) e^{-t^2/2\tau^2}$$

This makes sense because Hermite-Gaussians are their own Fourier transforms.

The time-domain will prove to be better for modeling passive mode-locking.

Other active mode-locking techniques

FM mode-locking

produce a phase shift per round trip implementation: electro-optic modulator similar results in terms of steady-state pulse duration

Synchronous pumping

gain medium is pumped with a pulsed laser, at a rate of 1 pulse per round trip requires an actively mode-locked laser to pump your laser (\$\$) requires the two cavity lengths to be accurately matched useful for converting long AM pulses into short AM pulses (e.g., 150 psec argon-ion pulses ⇒ sub-psec dye laser pulses)

Additive-pulse or coupled-cavity mode-locking

external cavity that feeds pulses back into main cavity synchronously requires two cavity lengths to be matched can be used to form sub-100-fsec pulses

Passive mode-locking

Saturable absorption:

- absorption saturates during the passage of the pulse
- leading edge is selectively eroded

Saturable gain:

- gain saturates during the passage of the pulse
- leading edge is selectively amplified

Kerr lensing is a type of saturable absorber

If a pulse experiences additional focusing due to the Kerr lens nonlinearity, and we align the laser for this extra focusing, then a high-intensity beam will have better overlap with the gain medium.

Mirror

Additional focusing optics can arrange for perfect overlap of the high-intensity beam back in the Ti:Sapphire crystal.

But not the lowintensity beam!

This is a type of saturable loss, with the same saturation behavior we've seen before:

Saturable-absorber mode-locking

Neglect gain saturation, and model a fast saturable absorber:

$$\alpha \left(\left| a\left(t \right) \right|^{2} \right) = \frac{\alpha_{0}}{1 + \frac{\left| a\left(t \right) \right|^{2}}{I_{sat}}} \qquad \text{Intensity}$$

. .

The transmission through a fast saturable absorber of length L_a :

$$e^{-\alpha L_a} \approx 1 - \alpha L_a \approx 1 - \alpha_0 L_a \left(1 - \frac{|a(t)|^2}{I_{sat}} \right) = 1 - \alpha_0 L_a + \gamma |a|^2$$

where: $\gamma = \frac{\alpha_0 L_a}{I_{sat}}$

Including saturable absorption in the mode-amplitude equation (and removing the active mode-locking term proportional to M):

$$a^{(k+1)} - a^{(k)} = \left\{ g \left(1 + \frac{1}{\Omega_g^2} \frac{d^2}{dt^2} \right) - \ell + \gamma \left| a^{(k)} \right|^2 \right\} a^{(k)} \quad \begin{array}{l} \text{Here, we} \\ \text{lumped} \\ \text{the constant} \\ \text{loss into } \ell \end{array} \right\}$$

19

Ł

The sech pulse shape

In steady state, this equation has the solution:

$$a(t) = A_0 \operatorname{sech}\left(\frac{t}{\tau}\right)$$

where the conditions on τ and A_0 are:

$$g - \ell + \frac{g}{\Omega_g^2 \tau^2} = 0$$

Note: the pulse duration is now proportional to the inverse of the gain bandwidth. Passive mode locking produces shorter pulses!

FWHM = 2.62 τ

The Master Equation: including GVD

Expand *k* to second order in ω : $k(\omega) = k(\omega_0) + k'\Delta\omega + \frac{1}{2}k''\Delta\omega^2$

After propagating a distance L_d , the amplitude becomes:

$$a(L_{d},\omega) = \exp\left\{-i\left[k(\omega_{o}) + k'\Delta\omega + \frac{1}{2}k''\Delta\omega^{2}\right]L_{d}\right\}a(0,\omega)$$

Ignore the constant phase and v_g , and approximate the 2nd-order phase:

$$\exp\left\{-\frac{1}{2}ik''\Delta\omega^{2}L_{d}\right\}a(0,\omega)\approx\left(1-\frac{1}{2}ik''\Delta\omega^{2}L_{d}\right)a(0,\omega)$$

Inverse-Fourier-transforming:

$$a(L_{d},t) = \left(1 + \frac{1}{2}ik''L_{d}\frac{d^{2}}{dt^{2}}\right)a(0,t) \equiv \left(1 + iD\frac{d^{2}}{dt^{2}}\right)a(0,t)$$

where: $D \equiv \frac{1}{2}k''L_{d}$ ²¹

The Master Equation (continued): including the Kerr effect

The Kerr Effect: $n = n_0 + n_2 I$ so: $\Phi = \frac{2\pi}{\lambda} n_2 L_k |a(t)|^2 \equiv \delta |a(t)|^2$ where $\delta \propto n_2$

The master equation (assuming small effects) becomes:

$$a^{(k+1)} - a^{(k)} = \left\{ g \left(1 + \frac{1}{\Omega_g^2} \frac{d^2}{dt^2} \right) + iD \frac{d^2}{dt^2} - \ell + (\gamma - i\delta) \left| a^{(k)} \right|^2 \right\} a^{(k)}$$

In steady state: $a^{(k+1)} - a^{(k)} = i\psi a(t)$ where ψ is the phase shift per round trip.

$$\left\{-i\psi + \left(g - \ell\right) + \left(\frac{g}{\Omega_g^2} + iD\right)\frac{d^2}{dt^2} + \left(\gamma - i\delta\right)\left|a\right|^2\right\}a\left(t\right) = 0$$

This important equation is called the Landau-Ginzberg Equation.

Solution to the Master Equation

It has an analytic solution:

$$a(t) = A_0 \left[\operatorname{sech}\left(\frac{t}{\tau}\right)\right]^{(1+i\beta)}$$

where:

$$-i\psi + g - \ell + \frac{\left(1 + i\beta\right)}{\tau^2} \left(\frac{g}{\Omega_g^2} + iD\right) = 0$$

$$\frac{1}{\tau^2} \left(\frac{g}{\Omega_g^2} + iD \right) \left(2 + 3i\beta - \beta^2 \right) = \left(\gamma - i\delta \right) A_0^2$$

The complex exponent yields chirp.

The pulse length and chirp parameter

Figure 1.7. The plots of pulsewidth τ and chirp parameter β as functions of dispersion, with the SPM coefficient as parameter. β , chirp parameter; D_n , normalized GVD parameter; γ_n , normalized equivalent fast saturable absorber, $\gamma_n = \gamma \frac{W}{2g} \Omega_g$; δ_n , normalized self-phase modulation parameter, $\delta_n = \delta \frac{W}{2g} \Omega_g$; τ_n normalized pulse width $\tau_n = \Omega_g \tau$.

24

The spectral width

The spectral width vs. dispersion for various SPM values.

A broader spectrum is possible if some positive chirp is acceptable.

The Nonlinear Schrodinger Equation

Recall the master equation:

$$a^{(k+1)} - a^{(k)} = \left\{ g \left(1 + \frac{1}{\Omega_g^2} \frac{d^2}{dt^2} \right) + iD \frac{d^2}{dt^2} - \ell + (\gamma - i\delta) \left| a^{(k)} \right|^2 \right\} a^{(k)}$$

If you were interested in light pulses *not* propagating inside a laser cavity, but in a medium outside the laser, then you would change this to a continuous differential equation (rather than a difference equation with a discrete round-trip index k).

You would also ignore gain and loss (both linear loss and saturable loss).

Then you would have the Nonlinear Schrodinger Equation:

$$\frac{\partial a}{\partial z} = \left(iD \frac{\partial^2}{\partial t^2} - i\delta \left| a \right|^2 \right) a$$

D - GVD parameter δ – Kerr nonlinearity

The Nonlinear Schrodinger Equation (NLSE)

$$\frac{\partial a}{\partial z} = \left(iD \frac{\partial^2}{\partial t^2} - i\delta \left| a \right|^2 \right) a$$

The solution to the nonlinear Shrodinger equation is:

$$a(z,t) = A_0 \operatorname{sech}\left(\frac{t}{\tau}\right) \exp\left[-i\frac{\delta|A_0|^2}{2}z\right]$$

where: $\frac{1}{\tau^2} = -\frac{\delta|A_0|^2}{2D}$

Note that δ/D , must be negative, or no solution exists.

But note that, despite dispersion, the pulse length and shape do not vary with distance: this predicts solitons

Evolution of a soliton from a square wave

So then do all mode-locked lasers produce sech(t) pulses?

$$\frac{\partial a}{\partial z} = \left(iD\frac{\partial^2}{\partial t^2} - i\delta|a|^2\right)a(z)$$

The Master Equation assumed that the dispersion is uniform throughout the laser cavity, so that the pulse is always experiencing a certain (constant) GVD as it propagates through one full round-trip.

So the dispersion D should depend on position within the laser cavity, D = D(z). In principle, so should the Kerr nonlinearity, $\delta = \delta(z)$ since this nonlinearity only exists inside the gain medium.

Perturbed nonlinear Schrodinger equation

$$\frac{\partial a}{\partial z} = \left(iD(z)\frac{\partial^2}{\partial t^2} - i\delta(z)|a|^2 \right) a(z)$$

 $\delta(z)$ = zero except inside the Ti:sapphire crystal D(z) = cavity dispersion map (positive inside the crystal, negative between the prisms) The pulse experiences these perturbations periodically, once per cavity round-trip.

Solution: requires numerical integration except in the asymptotic limit (infinite |D|)

Result: the pulse shape is not invariant! It varies during the round trip. But it is still stable at any particular location in the laser.

"Dispersion-managed solitons"

In real lasers, the pulse shape is complicated

Dispersion management can produce many different pulse shapes.

- small dispersion swing: sech pulses
- moderate dispersion: Gaussian pulses
- large dispersion: neither; the result depends sensitively on gain filtering

<u>Also:</u>

The perturbed NLSE neglects gain and saturable loss, both of which are required for mode-locked operation.

In principle, both would also need to be included in a distributed way:

g = g(z) and $\gamma = \gamma(z)$

Bottom line: it's complicated.