Ultrafast Laser Spectroscopy
techniques

How do we do ultrafast laser spectroscopy?

Generic ultrafast spectroscopy experiment

The pump-probe experiment ———]
Lock-in detection

Transient-grating spectroscopy \7
Ultrafast polarization spectroscopy

Spectrally resolved pump-probe spectroscopy

Theory of ultrafast measurements: the Liouville equation

lterative solution




Ultrafast laser spectroscopy: How?
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What’s going on in spectroscopy measurements?

Unexcited medium

Unexcited
medium
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wavelengths
corresponding
to transitions
from ground
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medium
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Pump the sample with one pulse; probe it with

Probe another a variable delay later; and measure
PR the change in the transmitted probe
f f E (-9 pulse energy or average
z Sample power vs. delay.
medium
% Detector

Variable

delay, 7 E (4,7

The Pump pulse
changes the
absorption of the
sample, temporarily.

pulse

pulse energy

Change in probe 5

6 Delay, ¢

The pump and probe pulses can be the same or different colors.



Modeling pump-probe measurements

Let the unexcited medium have an absorption coefficient, «,.
Immediately after excitation, the absorption decreases by Aq;,.
Excited states usually decay exponentially:

A7) = Ay exp(—7/T)) for z >0

where ris the delay after excitation, and 7, is the excited-state lifetime.

So the transmitted probe-beam intensity—and hence pulse energy and
average power—will depend on the delay, 7, and the lifetime, T;:

L, nsmited (T) = Lincidont €XD [—(oco —Aoe )L] where L = sample length

=1 . e %" exp [Aoce_r/ TlL}

incident

~ [incideme_%L |:] + Aae_T/TlL:| assuming Aoy L <<1



Modeling pump- vansmited (T) % Ly [ 1+ Acte™" L

probe measure- \ )

Y

ments (CO nt’ d) This is the transmitted probe intensity

before the pump pulse arrives at t = 0.

/ transmitted (T) ~1 transmitted (O_ ) |:1 T Aae_T/Tl L:|

The relative change in transmitted intensity vs. delay, 7, is:

AT ( T) / I 0 = [] transmitted (T) — 1 transmitted (O_)] / 1 transmitted (0_)

where we've divided the
numerator and denominator by
the incident intensity to obtain
transmissivities at rand 0.

—
|AT(D)/ T, ~ Aay exp(—7/T)) L |

By measuring this
decay, we obtain
a value for 7!

Change in probe-
beam transmission
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Lock-in Detection greatly increases the
sensitivity in pump-probe experiments.
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several orders of magnitude!




Rhodopsin is the ___Native __Artificial
iInvolved in vision. aSQS:Sf;gﬁg :
After absorbing a :
photon, rhodopsin  zhong, etal,

Ultrafast
undergoes a many- o=«
Step Process, p- 355 (1996).
whose first three

steps occur on fs

Absoption (a.u.)

Probe at 860 nm |

) (stimulated |
or ps time scales emission): | I .
and are poorly 10 1 2 3 a0 10 30 0 70
understood. Picoseconds

Excitation populates a new state, which absorbs at 460nm and emits at
860nm. It is thought that this state involves motion of the carbon atoms
(12, 13, 14). An artificial version of rhodopsin, with those atoms held in
place, reveals this change on a much slower time scale, confirming this
theory!
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M.J. Fehr, et al., Ultrafast Phenomena IX, pg. 462 (1994).



Exciting a surface and probing
its reflectivity at a later delay
can reveals surface physics.

Here, a IS
studied using ultrashort pulses
In a

to yield
200nm spatial resolution, too!

AR/R(QWR) (a.u.)

AR/R vs.
x and y
for a
delay of
10ps

. @ Delay Time (ps)

0 1 2 3
Delay Time (ps)

Emiliani, et al., Ultrafast
Phenomena XIl, p. 256
(2000).
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Excitation-
pulse
spectrum

Probe pulse

Excite pulse

0

“‘quantum beats”
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Vibrational relaxation
and predissociation in
the B state of iodine, in
solid Kr. Pump at 545
nm, probe at 395 nm.




Intensity fringes in
sample when pulses
arrive simultaneously
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Taking advantage of the induced grating:
the :

Two simultaneous pump pulses induce a weak

diffraction grating, followed, a variable delay later, .-~ %
by a probe pulse. Measure the diffracted pulse .-~ S
energy vs.delay: 7 m%
""""""" Intensity =0

Pump Sample . fnnlgeds in ww“____-————

Pump pu|se #2 pU|Se #1 ﬂ \ """""" P tsoagziteatigﬁ m-:-

_ - pulses
— _k _____ , ....-......?.’-B'...‘ ......................................
L A

Delay| %I — _y Probe Diffracted/

pulse pulse

This method is background-free, but the
diffracted pulse energy goes as the square
of the diffracted field and hence is weaker
than that in pump-probe measurements.

Diffracted
pulse energy

Delay, 1
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A transient-grating measurement may
still have a coherence spike!

When all the pulses overlap in time, who's to say .~
which are the pump pulses and which is the probe .-~

*

pulse? Intensity Eme—s
Pump pulse - fringes in ﬁ

#1 (acting as sample due =

the probe) ) to a pump e
Pumppulse#2..  , A = -7 pulse and ===
»\AA the probe e
_______ ~ b - - acting as
> A u‘,.r - another %m_

N A A @ TR RESS ==
Delay Q !y Probe pulse
(acting as a

pump pulse)

A transient-grating experiment
with a coherence spike:

Diffracted
beam energy

0 Delay, t



What the transient-grating technigue measures

It measures the Pythagorean sum of the changes in the absorption
and refractive index. The diffraction efficiency, n(7), is given by:

() z[AOf(T)LT J{An(f)kLT

4 2 e
Absorption Refractive index
(amplitude) T | (phase) grating
grating

This is In contrast to the pump-probe technique, which is only sensitive
to the change in absorption and depends on it linearly.

If the absorption grating dominates % O
- g > £ 2
and the pump-probe decay is exp(-z/7,), <L & > 2=
then the TG decay will be exp(-2z/ T,): 2 E S
o8 c e
® C © S

. . £ L =

H. Eichler, Laser-Induced Dynamic a Delay, t

Gratings, Springer-Verlag, 1986. 0



Exciting a sample with an ultrashort pulse and then observing the
fluorescence vs. time also yields sample dynamics. This can

be done by directly observing the fluorescence (if the decay is slow)
or, by time-gating it

Pump with a probe pulse in
pulse Fluorescence a SFG crystal.

7 g

Sample | \
\ Dﬂ‘ Slow detector
Probe /
oulse Lens

Delay || N7

Fluorescent
beam power

Delay
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A 45°-polarized pump pulse induces In an ordinarily

isotropic sample via the Kerr effect. A variably delayed probe pulse

between crossed polarizers watches the birefringence decay,
revealing the sample

S
AA ample @

H .
>Probe I
pulse
Delay' NS
It's also possible to change the
differently for the two
polarizations. This is called . It also rotates the

probe polarization and can also be used to study



Ultrafast spectroscopy setups are
becoming more and more sophisticated!

Spatial Light Modulator Driven Coherent Multi-Dimensional
Spectroscopy

Ti:zapphire Beam  Pulse

A tool for studying Oscillator  Shaper Shaper lt.z_l Spectrometer
electron coupling |
and dynamics in N | ,
condensed matter v
systems, including L
semiconductor

nanostructures and

e

LGizs,
Ciscllaka-
(X

Jonathan Tollerud,
Christopher Hall,
Jeffrey Davis

~
biological light 5
harvestin ‘i’%_
complexes. —% - —
Cylindrical ML= SLM Cylindrical

Grating L ens Grating

Lens = e



Photon Echo

Transient Coherent Raman Spectroscopy

Transient Coherent Anti-Stokes Raman Spectroscopy

Transient Surface SHG Spectroscopy

Transient Photo-electron Spectroscopy

Almost any physical effect that can be induced by ultrashort light

pulses. The range of techniques is enormous, and growing all the
time.



Modeling ultrafast experiments: Semi-
classical Nonlinear-Optical Perturbation
Theory

 Treat the medium quantum-mechanically and the light classically.

« Assume negligible transfer of population due to the light: it is a
perturbation.

« Assume that collisions are very frequent, but very weak:
they yield exponential decay of any coherence

» Use the density matrix to describe the system. The density matrix is
defined according to: p, =|m)(n| (using bra & ket notation)

For any operator A, the mean value is given by: <A> = Trace(pA)

« Various effects are not included in this approach: saturation, population
of other states by spontaneous emission, photon statistics.



The density matrix

@
If the state of a single two-level atom is: ‘ o

v =c,|a)+
p,,0r  arethe

. : _ _ population densities of
The density matrix, p.(?), is defined as: states o and B.

B *

'00505 29 C(Z Ca CO(

popandp are the degree of
coherence between states « and

Since excited state populations always eventually decay to ground
state populations, p,. generally depends on time, p.(¢).

And coherence between two states usually decays even faster, so the
off-diagonal elements also depends on time.



The density matrix for a many-atom system

For a system, the density matrix, p,(z), is defined as:

P ) 1, e, (e ) e, ()
P |12, D

where the sums are over all atoms or molecules in the system.

Simplifying: Z‘Cfl (t)‘z an (7)
PRAGACEEDS

The diagonal elements (populations) are always positive, while the
off-diagonal elements (coherences) can be negative or even complex.

So cancellations can occur in coherences.



/—‘ collisions” One reason

N AN ANA A WAVI/ANNA
Atom #1 ., """
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Atom #2 Hm VARVARW, VARV

Atom #3 Lo I\ /N /\ /) ANVANA

Here’s another reason:

/“ V V \V V UV \V




Grating and coherence decay: 7, and 7,

A population or coherence decays as excited states decay back to ground.

A coherence can also cancel out if collisions have randomized the phase
of each oscillating atomic dipole.

It is usually assumed that both of these decays occur exponentially in time,
so that each process has a single time constant. By convention, these are
always written as:

Population [p

aa(

t) or ]: T, ‘relaxation time”

Coherence [p, (t) or ]: T, “dephasing time”

a

Collisions cause dephasing but not necessarily de-excitation;
therefore, it is generally true that 7, << T,.

The measurement of these times is often
the goal of nonlinear spectroscopy!



Evolution of the density matrix

The for the evolution of a mixed state (described by a
density matrix) is:

ihci’—p — [[—[, ,0] where H is the system Hamiltonian.
[

This equation does not include energy relaxation or the effects of
collisions. So we generally need to add in those effects in an ad hoc way,
to account for both population (7;) and coherence (7,) decay.

For a 2-level system, the Hamiltonian is a 2x2 matrix:

where this last step

2)
E 0 0O O :
hQ) { H, = { I } _ { } has defined the zero

‘1> 0 £, 0 hQ of energy as the
energy of state 1




Density matrix & the Polarization

For an ensemble of 2-level systems in the presence of a laser field:
2)
1)

where u is the dipole transition moment between the two states:
W= ejwz* (r)ry, (r)d’r=e(2|r|1)

and so the macroscopic polarization P is:

ronmerof 22 7]

Py Pn]l—n O

hQ{ ha)lase,w The polarization operator p is: pZ{ 0 _“}

—u 0

= _val(plz +p21)

The polarization is determined by the off-diagonal elements of
the density matrix. And their time evolution is computed using
the Liouville equation.



Density matrix & Hamiltonian

The Hamiltonian consists of two pieces: the unperturbed two-
level system, plus the interaction (perturbation) term describing
the light-matter interaction.

H = H, + H,; where:

int

E. 0] [0 0 0 —uE
H, = : — .. =D - —
RO S B
o
—uE hQ
dp
Thus the Liouville equation i1 —— o =|H, p], becomes:

ihi|:'0” /012:|:|: 0 _lLlE:||:IOII /012:|_|::011 p12i||: 0 _IUE}
dt| P P —pE hQ || py Py P Pn | —HE 7L



Diagonal elements of p

We know that excited state populations typically decay exponentially to
their equilibrium value, with a time constant 7,. So let’s insert that term:

Liouville equation for the p,, element:

. 0Py i Py — Py
17 ot —<2‘[H,p]‘2> 17 T

:<2‘{ 0 _HE:H:pll p12:|_|:p11 p12:||: 0 _ME}‘2>_ihp22—P§g
—WET BQ [Py Pnl [Py Pn]lHET RQ /]

_th22_p;g
T

1

= _(HE*plz T HEPm)

...and we could work out a similar expression for p,,.



Diagonal elements of p

From these results, we derive an equation for the population

8Ap
Ot

Here, Ap, is the equilibrium population difference (which need not be
zero for finite temperature).

Ap—Ap,
T

1

in—- 2(HE*912 +HEP21)_ih

This shows that the time evolution of the
depends on the off-diagonal elements, i.e., the !

What about the time evolution of the off-diagonal elements?



Off-diagonal elements of p

As with the population terms, the coherence terms also decay, but with
a different time constant, 7,. We need to also insert this one by hand.

We assume that, in the equilibrium state, there is zero coherence
between the two states.

Liouville equation for the off-diagonal element:

. 0P, .2 P21
h =(2|| H 1)—inh—
2= .- in

Using the same matrices as before for H and p, we find that this is:

op ¥ ih
ih—2L =uE Ap+| hQ——
ot K p ( szpﬂ

The time evolution of p,, depends on Ap!



A system of equations for the evolution of p

We have found two coupled equations for p,, and Ap:

aA 2 * o o A _A
ﬁtp = ;ZH (pzl TPy, )(E e t)_ P T1 i
0 ' i . o : |
gtzl = 1; (E ‘—Ee t)Ap—(1§2+T—2jp21

To simplify this system of equations, we use the

(RWA), which assumes that both p,, and Ap can be
written as sums of harmonics of the driving (laser) frequency:

(n) o~ @t We can insert these assumed forms
P, () =D Py
! Z into the above equations, and match

_ m) -imot UP terms with the same frequency
Ap ()= Z Ap™e exponents.



Rotating wave approximation

Insert into the previous equations, and match terms of like frequency:

8Ap(n) 21;4 N N Ap(n) Ap(“)
E —p'E
Py h (p21 — Py ) T
ap(zrll) (n) l“ (n-1) where we have defined 1
- Fp21 T EAp a shorthand notation: 1 = _F_i(Q_(DL

Ot

These can be integrated to yield:

. (21 (D) /ot t'—t
Ap( = Idt ( h“j(pzl E’ (t')— p( I)E(t ))eXp|: }

1

t , [ 1
plr = j dt' (%)E(t'}Ap(’”) exp j ['dt"
| 1



Iterative method for solving perturbatively
Ap™ =F(p ™)

pl = Glap™ ™)

Start with p,,© =0 and Ap®) = p, and iterate:

We have a system of equations of the form:

o) =G(8p") ——>ap? =F (o)) = F (G 49"
——pl) =Glap®)=G(F(G(4p )
Implementing this procedure, the p,,® term looks like this:
p(231):—21p0( j [ ar, jdr jdt exp|: - +.[th}><
{E(tl)E* (t,)E(t,) exp D Cdt } +E(t)E(t)E (t,)exp { j [ dt ﬂ

Proportional to the product of three E fields: it must describe a %) process!



Multiple pulses
p) = 2zp0( j J'dtl jdt J-dt exp{ =

1

+Il“dt}<

{E(tl)E* (tz)E(t3)exp{ j Cdt } +E(t)E(t)E (g)exp[j-l“*dt ”

b &}

Suppose there are two pulses, both short compared to all relevant time scales:

E(t) = E, 8(t) ekt + E, 8(t — 1) elker

K

A product of three of these E(t) fields gives 8 terms, each
with one of these four wave vectors:

—— phase matching: pick the direction you care about



Example: the coherent diffraction direction
k2
Z Choose the wave vector 2k, - k,.

NN K, Then only two terms (of the 16 in p,,) contribute:

pg):_zlpoEE( j [ a, jdt jdr exp{ - +'[Fdz}<

{s(tl)éi(tz —1)3(t;) exp { j Tdt } +8(2,)8(2,)8(t, — ) exp { jr* o ﬂ

Firstterm: musthavet,Z0OANDt, =t — 120 } signal only

musthavet;2tANDt,=0 —— 1=<0 fort=0

"coherence spike"

Second term: must have 1 <0 andt > 0 (no other constraints);
it gives rise to signal at values of t other than merely t =0



