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where F{E(t)} denotes E(), the Fourier transform of E(t).

The Fourier transform of E(t) contains the same information as the original 
function E(t).  The Fourier transform is just a different way of representing
a signal (in the frequency domain rather than in the time domain).

But the spectrum contains less information, because we take the 
magnitude of E(), therefore losing the phase information.

The spectrum of a light wave
The spectrum of a light wave is defined as:



Parseval’s Theorem* says that the 
energy in a function is the same, whether 
you integrate over time or frequency:

2 21( ) ( )
2

f t dt F d 


 

 

 
2     ( ) ( ) *( )

 

 

 f t dt f t f t dt

Parseval’s Theorem

Proof:

1 1( exp( ) *( exp( )
2 2

  

  

   
        

      
  F j t d F j t d dt     

 

1 1( ) *( ') exp( [ '] ) '
2 2

  

  

 
  
  

  F F j t dt d d     
 

21 1( ) *( ) ( )
2 2

 

 

  F F d F d    
 

1 1( ) *( ') [2 ')] '
2 2

 

 

   F F d d      
 

* also known as 
Rayleigh’s Identity.



The Fourier 
Transform of a 
sum of two 
functions
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The FT of a sum is the 
sum of the FT’s.

Also, constants factor out.
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This property reflects the fact that the Fourier transform 
is a linear operation.



Shift Theorem
( ) :The Fourier transform of a shifted function, f t a
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This theorem is 
important in optics, 
because we often 

encounter functions 
that are shifting 

(continuously) along 
the time axis – they are 

called waves!



An example of the Shift Theorem in optics
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Suppose that we’re measuring the spectrum of a light wave, E(t), but a 
small fraction of the irradiance of this light, say , takes a different path 
that also leads to the spectrometer.

2
( ) { ( ) ( )}  S F E t E t a 

The measured spectrum is no longer what we expect it to be.  It is 
contaminated! It is the magnitude-squared FT of the total field:
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Using the Shift Theorem:

The extra light has the field,                     , where a is the extra path 
taken by the weak beam.
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Application of the Shift Theorem (cont’d)
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Neglecting  compared to      and 1:

If  =1% (a seemingly small amount), these ripples will have an 
amazingly large amplitude of 2 20%!

And, these ripples will have a 
surprisingly large amplitude:

The contaminated spectrum will have ripples with a period of 2/a.



The convolution allows one function to smear or broaden another.
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The Convolution



Here, rect(x) * rect(x) 
= Triangle(x)

The convolution 
is sometimes 

easy to compute
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This convolution does not smear out f(t).

Convolution with a delta function simply shifts f(t) so that it is 
centered on the delta-function, without changing its shape.  



The Convolution Theorem says that the FT of a convolution is 
the product of the Fourier Transforms:
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rect( ) rect( ) Triangle( ) x x x

The Convolution Theorem in action

{rect( )} sinc( )F x kWe saw last lecture that:
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The ‘autocorrelation’ of a function f(x) is given 
by the convolution of the function with itself:
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The Autocorrelation

The shaded area is the value of the autocorrelation for one particular value 
of the displacement a. This represents one point in the autocorrelation g(t).
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A Gaussian 
convolved with itself
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The Autocorrelation Theorem
The Fourier transform of the autocorrelation of a function is 
equal to the spectrum of the function:

The proof follows directly from:

a) the convolution theorem:

b) the definition of the spectrum:
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The Fourier transform of a light-wave field’s autocorrelation is its spectrum!

= the spectrum of the light!

The Autocorrelation Theorem in optics

This relation yields an alternative technique for measuring a light wave’s 
spectrum.  It is used extensively for measuring the spectrum of light in 
the infrared, a technique known as “Fourier-transform infrared 
spectroscopy” (FTIR).
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This version of the Autocorrelation 
Theorem is known as the “Wiener-
Khinchin Theorem.”

Aleksandr Khinchin
1894-1959

Norbert Wiener
1894-1964



Fourier-transform spectroscopy

We will discuss FT spectroscopy in more detail in lecture 36.

See also:  http://mmrc.caltech.edu/FTIR/FTIRintro.pdf

FT spectroscopy is one of the most widely used 
techniques in chemical analysis.



The Shah function, III(x), is an infinitely long train of equally 
spaced delta-functions.

The symbol III is pronounced shah after the Cyrillic character ш, which is 
said to have been modeled on the Hebrew letter        (shin) which, in turn, 
may derive from the Egyptian          a hieroglyph depicting papyrus plants 
along the Nile. 

The Shah Function
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If  = 2n, where n is an integer, the sum diverges; 
otherwise, cancellation occurs, and the sum vanishes.
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The Fourier Transform of the 
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The Fourier transform of the Shah function is another Shah function.
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The Shah Function in optics
An infinite train of identical functions f(t) can be written as a convolution:

where f(t) is the shape of each pulse and T is the time between pulses.

Here, a pulsed function (blue) is convolved 
with two narrow rectangles (red), which 
results in a reproduction (green) of the 
pulsed function centered on the locations of 
each of the rectangles.

Picture this repeating infinitely along the 
time axis, and you have the idea.
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The spectrum of an infinite train of pulses

Here f(t) represents a single 
pulse and T is the time 
between pulses. 
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Applying the Convolution theorem:

The spectrum of a train of identical pulses is a series of delta functions, 
with an envelope determined by F(), the spectrum of just one of the 
pulses.

What is the spectrum of this pulse train?



A single pulse bouncing back and forth inside a laser cavity, with 
round-trip time T, will produce such a pulse train.  

The spacing between frequencies is then  = /T or  = 1/T.

Lasers often produce train of pulses

So if you measure the 
spectrum of a laser like this, 
you’ll find a series of spikes:

These are known as the 
“longitudinal modes” of the 
laser. 
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In fact, all lasers 
have these 
discrete modes, 
whether or not 
they are pulsed 
lasers.



A laser’s frequencies, its “longitudinal modes,” are the frequencies 
at which it can operate.  It cannot operate at other frequencies.

The modes are separated in frequency by 1/T = c/L, where L is the 
round-trip length of the laser.

Modes of a laser
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Here, additional narrowband 
filtering has yielded a single 
mode.

Most lasers are “multi-mode”
- emitting light at more than 
one frequency at a time.

Some are “single mode”
- only one longitudinal mode 
oscillates at a time.

Multiple modes



Modes of a laser - examples
If the laser is small, then the mode spacing is large, and easy 
to measure.

If the laser is larger, then the mode spacing can be quite small, 
and hard to resolve.

schematic of 
a typical 

femtosecond
laser

end-to-end cavity length: 1.5 meters
So the mode spacing is:

0 100 MHz
RT

c
L

  
17.3 THz

The spectral resolution of typical 
spectrometers is MUCH too coarse 
to resolve such closely spaced lines.


