20. The Fourier Transform in optics, I

Parseval’'s Theorem

The Shift theorem

Convolutions and the Convolution Theorem
Autocorrelations and the Autocorrelation Theorem

The Shah Function in optics

The Fourier Transform of a train of pulses
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The spectrum of a light wave

The spectrum of a light wave is defined as:

where F{E(t)} denotes E(w), the Fourier transform of E(t).

The Fourier transform of E(t) contains the same information as the original
function E(t). The Fourier transform is just a different way of representing
a signal (in the frequency domain rather than in the time domain).

But the spectrum contains less information, because we take the
magnitude of E(w), therefore losing the phase information.



Parseval’'s Theorem

Parseval’'s Theorem* says that the 0 1 7
energy in a function is the same, whether -“ f(t)\2 dt = —j\ F(w) \2 do
you integrate over time or frequency: bt Z”m

Proof: I|f(t)|2dt:j £ (1) *(t) dt
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:ijp(w) F*(w)dw:ij |F(a))|2da) *also.known as.
2m J 2z 3. Rayleigh’s Identity.



he Fourier
ransform of a
sum of two
functions

F{af (t)+bg(t)} =
a-F{f®)!+b-F{g(t)!

The FT of a sum is the
sum of the FT’s.

Also, constants factor out.
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This property reflects the fact that the Fourier transform

is a linear operation.



Shift Theorem

The Fourier transform of a shifted function, f (t—a):

(F{f(t-a)} =exp(- joa)F (o)

Proof :
. This theorem is

F{f(t-a)}= [ ft-a)exp(-jotydt ~ POTEN In OPUCS

encounter functions

Change variables: u=t-a that are shifting
o _ (continuously) along
| f(u)exp(-jo[u+a])du the time axis — they are
S called waves!

= exp(— jwa) T f (u)exp(—jou)du

= exp(— jowa)F (w) QED



An example of the Shift Theorem in optics

Suppose that we're measuring the spectrum of a light wave, E(t), but a
small fraction of the irradiance of this light, say ¢, takes a different path
that also leads to the spectrometer.

The extra light has the field, \/; E(t—a), where a is the extra path
taken by the weak beam.

The measured spectrum is no longer what we expectitto be. ltis
contaminated! It is the magnitude-squared FT of the total field:

S(w) =| FEE@) e Et-a)}|

Using the Shift Theorem:

Je E(t-a)

l Spectro-
E®) | meter

:‘ E(w) +e exp(-joa) E(w) ‘2

=|E(w)|" 1+ exp(—ja)a)‘2 E(t)

:\E(a))\2 :1+ 2\Je cos(wa) + & ]



Application of the Shift Theorem (cont’'d)
S(a)):|E(a))|2{1+2\/§ cos(wa) +g}

Neglecting € compared to Ve and 1:

S () z|E(w)|2{1+2JE cos(wa) }
1

The contaminated spectrum will have ripples with a period of 2x/a.

Original spectrum: Contaminated spectrum:

And, these ripples will have a  **

surprisingly large amplitude:
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If £ =1% (a seemingly small amount), these ripples will have an
amazingly large amplitude of 2ve =20%!



The Convolution

The convolution allows one function to smear or broaden another.

f(t)*g(t) = T f(x) g(t—x) dx

changing variables:

= | ft-x0g00dx LS,




The convolution

Here, rect(x) * rect(x)
= Triangle(x)

IS sometimes
easy to compute [

.....................

Convolution with a delta function simply shifts f(t) so that it is
centered on the delta-function, without changing its shape.

f()y*o(t—a)= T f(t—u)o(u—a)du

=f(t-a)

This convolution does not smear out f(t).



The Convolution Theorem

The Convolution Theorem says that the FT of a convolution is
the product of the Fourier Transforms:

F{f(t) * g()} = F(»)-G(w)

Proof:

F{f(t)*g(t)}= j{j f(x) g(t—x) dx}exp(—ja)t) dt
_j f(x){j g(t- x)exp(—Ja)t)dt}dx

Shift Theorem <
— j f (x) {G(w)exp(- jox)} dx

— j f (X) exp(~ jox) dx G(w) = F (0)G(w)



he Convolution

heorem In action

rect(x) *rect(x) = Triangle(x)

We saw last lecture that:
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A Gaussian

The Autocorrelation __ convolved with sel

The ‘autocorrelation’ of a function f(x) is given
by the convolution of the function with itself:

o0

g(t)=f(t)*f(t)=[ FE)f(t-t)dt

The shaded area is the value of the autocorrelation for one particular value
of the displacement a. This represents one point in the autocorrelation g(t).

o0

'
In optics, we define the autocorrelation j‘ f(t)) f *(tr —t) dt’
with a complex conjugate:

—0o0



The Autocorrelation Theorem

The Fourier transform of the autocorrelation of a function is
equal to the spectrum of the function:

The proof follows directly from:
a) the convolution theorem:

F{f(t) = f (t)} = F(a)) F*(a))
b) the definition of the spectrum:

S(w) =F(0) F(0)=|F (o)



The Autocorrelation Theorem in optics

TE(t’)E*(t’—t) dt's = \F{E(t)}

J

F = |E(@)| =S(o)

N

‘2

= the spectrum of the light!

The Fourier transform of a light-wave field’s autocorrelation is its spectrum!

This relation yields an alternative technique for measuring a light wave’s
spectrum. It is used extensively for measuring the spectrum of light in
the infrared, a technique known as “Fourier-transform infrared
spectroscopy” (FTIR).

This version of the Autocorrelation
Theorem is known as the “Wiener-

Khinchin Theorem.” Norbert Wiener
1894-1964

Aleksandr Khinchin
1894-1959



Fourier-transform spectroscopy

FT spectroscopy is one of the most widely used

techniques in chemical analysis.

Fourier Transform
Infrared (FTIR)

[. Detector

Spectrometry E] Sample
Moveable
Mirror
IR Source ]
Beam
Splitter
Infrared light is fundamentally weak.
An FT-IR instrument uses Felgells
advantage, or nol reducing light Fixed

intensity with a monochramator, to
make the most of the IR source, giving
a better spectrum in less lime,

Light travels from the IR source to the beam splitter,
whare 50% of the light is reflected to the ficed mirror
and 50% is transmitted to the moveable mirror. The
light is reflected and recombined at the beam splitter
betore passing through the sample and to the detector.

[ 1

Mirror  as the intensity of the recombined
light is recorded at the detector, the
moveable mirror travels towards the
beam splitter, producing an
interferogram. A Fourier lransform is
used to produce a spectrum from
the interferograrm.

SERIES PREMIERE

 NEW DRAMA WEDNESDAY SEPT 22 10/9¢

A form of spectroscopy that Mentifies arganic and morganic
matenials (inchuding particulates, fibars and residues) by measuring
iy the rateial abserbs vanous infrared fight savslangthe, The
resulting infrared absarption Bands helo identify spocific molecules
and their struciures.

We will discuss FT spectroscopy in more detail in lecture 36.

See also: http://mmrc.caltech.edu/FTIR/FTIRintro.pdf




he Shah Function

The Shah function, Ill(x), is an infinitely long train of equally
spaced delta-functions.
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The symbol 11l is pronounced shah after the Cyrillic character ww, which is
said to have been modeled on the Hebrew letter ¥/ (shin) which, in turn,

may derive from the Egyptian w a hieroglyph depicting papyrus plants
along the Nile.



The Fourier Transform of the
Shah Function

F ()} = T f: S(t—m)exp(— jet)dt
-y Ojo S(t—m)exp(— jot)dt
= i exp(— jom)

If ® = 2nm, where n is an integer, the sum diverges;
otherwise, cancellation occurs, and the sum vanishes.

so: F{I(t)}oc Il (w/27)

The Fourier transform of the Shah function is another Shah function.



he Shah Function in optics

An infinite train of identical functions f(t) can be written as a convolution:

ay E() = E/T)* f(t)
L -5 vwrem

M=—00

where f(t) is the shape of each pulse and T is the time between pulses.

Here, a pulsed function (blue) is convolved
with two narrow rectangles (red), which
results in a reproduction (green) of the
pulsed function centered on the locations of
each of the rectangles.

-+ Picture this repeating infinitely along the
time axis, and you have the idea.




The spectrum of an infinite train of pulses

E(t) = HI(t/T) = f (t)

/YHHK(HZW(HT) A /Y(t -T) K(t 2T7Y(t -3T)
Here f(t) represents a single > 7

pulse and T is the time 3T 2T T
between pulses.

What is the spectrum of this pulse train?

Applying the Convolution theorem:
Fw)

E(w) o (ol /27)F (o) /\fﬂh@“{ﬁ(f)} |
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The spectrum of a train of identical pulses is a series of delta functions,
with an envelope determined by F(w), the spectrum of just one of the
pulses.



Lasers often produce train of pulses

A single pulse bouncing back and forth inside a laser cavity, with
round-trip time T, will produce such a pulse train.

The spacing between frequencies is then 6w = 2#/T or 6v = 1/T.
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In fact, all lasers
have these
discrete modes,
whether or not
they are pulsed
lasers.

So if you measure the
spectrum of a laser like this,
you'll find a series of spikes:

Intensity ——

These are known as the

“longitudinal modes” of the “
laser.

Frequency —




Modes of a laser

A laser’s frequencies, its “longitudinal modes,” are the frequencies
at which it can operate. It cannot operate at other frequencies.

The modes are separated in frequency by 1/T = c/L, where L is the
round-trip length of the laser.

Most lasers are “multi-mode”
- emitting light at more than
one frequency at a time.

Intensity ———

Some are “single mode”

- only one longitudinal mode e =

oscillates at a time. / Frequency —» \

Multiple modes Here, additional narrowband
filtering has yielded a single
mode.




Modes of a laser - examples

If the laser is small, then the mode spacing is large, and easy

to measure.
Multimode gain guided Single-mode index guided

670 nm laser diode 780 nm laser diode

Relative intensity
Relative intensity

I 1 ] 1
668 670 672 777 787 797
Wavelength % (nm) Wavelength 2 (nm)

If the laser is larger, then the mode spacing can be quite small,
and hard to resolve.
end-to-end cavity length: 1.5 meters

laser

schematic of |- vy ~" So the mode spacing is:  17.3THz
femtc?slgclzacl)cr:f:jI v =1 ov= =2 ~100 MHz A
saturable LRT -%
laser [ "o
oo 4 ™ The spectral resolution of typical
= spectrometers is MUCH too coarse L2 N\

hhhhhhhhhhhhhhhhh

to resolve such closely spaced lines. A




