
21. Fourier transforms in optics, part 3

Magnitude and phase
some examples

amplitude and phase of light waves
what is the spectral phase, anyway?

The Scale Theorem
Defining the duration of a pulse

the uncertainty principle

Fourier transforms in 2D
x, k – a new set of conjugate variables

image processing with Fourier transforms



Fourier Transform Magnitude and Phase
For any complex quantity, we can decompose f(t) and F() into their 
magnitude and phase.

f(t) can be written: f(t) =  Mag{f(t)} exp[ j Phase{f(t)}]

where Mag{f(t)}2 is called the intensity, I(t),* and Phase{f(t)} is 
called the temporal phase, (t).

Analogously, F() =  Mag{F()} exp[ j Phase{F()}]

The Mag{F()}2 is called the spectrum, S(), and the Phase{F()}
is called the spectral phase, ().

Just as both the intensity and phase are required to specify f(t), 
both the spectrum and spectral phase are required to specify F().

*of course, in optics the intensity is (1/2)0c0|E(t)|2 – the 
constants in front shouldn’t be ignored!



It’s easy to go back and forth between the function f(t) and the 
intensity and phase.

The intensity:

Calculating the Intensity and the Phase
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The phase:

(t) = Im{ ln[f(t)] }

which is the same as:
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Example: Intensity and Phase of a Gaussian

Time domain:

The FT of a Gaussian 
is a Gaussian, so it 
also has zero spectral 
phase.

Frequency domain:

2

( )  atf t AeThe Gaussian is real, so its phase is zero:



The spectral phase of a time-shifted pulse
 0 0( ) exp( ) ( )F f t t j t F   Recall the Shift Theorem:

A time-shift simply 
adds some linear 
spectral phase in the 
frequency domain!

Time-shifted 
Gaussian pulse 
(with zero phase):



Light has intensity and phase also
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For a single-frequency light wave, we have written all semester long:

neglecting the spatial 
dependence, for now

where this is the complex amplitude, given by: 0 0
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For a light wave with many superposed frequencies, we cannot 
assume that the initial phase is the same for all of them!

It is easiest to envision this in the frequency domain:

   
 

0 (( ) exp

ex( ) (p

)

)

iiE E j

S j

 

 

 



 

 

 A Fourier sum of 
frequency components 
i, each with its own 
phase (i)



Light has intensity and phase also
A light wave has the frequency-domain electric field:

Once again, knowledge of the intensity and temporal phase or of the 
spectrum and spectral phase is sufficient to determine the light wave.

The minus 
signs are just 
conventions.

Spectral 
Phase

Spectrum
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Intensity Temporal phase
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Equivalently, in the time domain:

Usually, in the 
time domain, we 
separate out the 
part that is 
linear in t.



What is the spectral phase anyway?
The spectral phase is the absolute phase of each frequency component.

t0

All six of these 
frequencies have 
zero phase. So a 
light wave which is 
the sum of these 6 
waves has:

() = 0
Note that this wave 
has constructive 
interference, and 
hence a peak, at 
t = 0.

And it has 
cancellation 
elsewhere.
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Now try a linear spectral phase: () = a.

t

(1) = 0

(2) = 0.2 

(3) = 0.4 

(4) = 0.6 

(5) = 0.8 

(6) = 
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2

3

4

5

6

By the Shift Theorem, a linear spectral phase is just a delay in time. 

And this diagram shows why it works that way!



The spectral phase is what distinguishes 
a light bulb from a short light pulse.



Scale Theorem
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The Fourier transform of a function that has been scaled by a certain 
factor in the time domain is the Fourier transform of the unscaled 
function, scaled by the inverse factor.
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Change variables:  u = t

The Fourier transform of a scaled function, f(t) (assume  > 0): 



The Scale 
Theorem 
in action

The shorter 
the pulse, 

the broader 
the spectrum!

This is the essence 
of the Uncertainty 
Principle!

F()





f(t)

t

Short
pulse

t

Long
pulse

t

Medium-
length
pulse



But be careful: 
- A short pulse requires a broad spectrum;
- But a long pulse does not require a narrow spectrum!
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(Abs value is 
unnecessary 
for intensity.)

There are many definitions of the "width" 
or “length” of a wave or pulse.

The “effective width” is the width of a rectangle 
whose height and area are the same as those of 
the pulse.

Effective width ≡ Area / height:

The Width of a Pulse

More often, people use a different measure of pulse width, one which 
is easier to compute.



We can define this width in terms of f(t) or (more often) of its 
intensity, |f(t)|2.

And we can define spectral widths ( or ) similarly in the 
frequency domain, in terms of the spectrum |F()|2.

t

tFWHM

1

0.5

The Full Width at Half-
Maximum (FWHM)

“Full-width at half-maximum” is the 
distance between the half-maximum 
points.  It is a convenient measure of 
the duration of a pulse.

Advantage: It is experimentally easy 
to determine.
Disadvantage: It doesn’t tell us 
anything about the structure of the 
pulse. t

These two 
pulses have the 
same tFWHM
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The Uncertainty Principle
The Uncertainty Principle says that the product of a function's widths in 
the time domain (t) and the frequency domain () has a minimum 
value.  And that value must be greater than zero.

Define the widths as:

(assuming f(t) and F() peak at t = 0 and  = 0, respectively)
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Laser
continuous 
laser beam 
with spectrum

 0( )S     

The Uncertainty Principle in optics

rotating 
chopper wheel

light pulses

Suppose we start with a continuous laser, with 0
0( ) j tE t E e 

The wheel changes the spectrum of the light!

To make a short light pulse, 
you need a broad spectrum.

The spectrum of a short light pulse is always broad, but 
can be centered at any wavelength.

10 fsec t



These two pulses have the same spectra.  
But they are obviously not the same.

The spectral phase… again

2
0

0( )  j tatE t E e e 

temporal phase (t) = 0

22
0

0( )   j t j tatE t E e e  

temporal phase (t) = t2

In ultrafast optics, measuring the phase of your laser pulse is 
often very important, and also very challenging.



Another set of conjugate variables: x, k

F{f(x)}  =  G(k)

( ) ( ) exp( )



 G k f x jkx dx

If f(x) is a function of position,

We refer to k as the spatial frequency.

Everything we’ve said about Fourier transforms between the t
and  domains also applies to the x and k domains.

k

x

Note that the units of x and k are inverses, just like with t and .



The x,k domain is relevant in optics

Any arbitrarily complex wave front can be written as a superposition 
of plane waves, each traveling at a slightly different angle:

z

x    , ,    xjk x
x xE x z A k z e dk

In analogy with the “frequency components” of a spectrum, we 
refer to the quantity kx as a “spatial frequency component”.

where the coefficients A(kx,z) can be 
found by the inverse FT:
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2
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
 A complicated wave front 

propagating in the z direction



The 2D Fourier Transform

F(2){f(x,y)}

x
y

f(x,y)

If f(x,y) = fx(x) fy(y), 

then the 2D FT splits into two 1D FT's.  

But this does not usually happen.



F (2){f(x,y)}  =  F(kx,ky) 

=       f(x,y) exp[j(kxx+kyy)] dx dy

If we can expand in x, why not also y?



A 2D Fourier Transform:  a square function

Consider a square function in the xy
plane:

f(x,y)  =  rect(x) rect(y) x
y

f(x,y)

The 2D Fourier transform splits into the 
product of two 1D Fourier transforms:

F(2){f(x,y)}  =  sinc(kx) sinc(ky)

F (2){f(x,y)}

This picture is an optical
determination of the Fourier 
transform of the 2D square function!



Fourier Transform Magnitude and Phase

Pictures 
reconstructed

using the Fourier 
phase

of another 
picture

The phase of the Fourier transform is much more important 
than the magnitude in reconstructing an image.

cameraman dog and cat

Mag{dog and cat}
Phase{cameraman}

Mag{cameraman} 
Phase{dog and cat}

More information: http://homepages.inf.ed.ac.uk/rbf/HIPR2/fourier.htm



The Projection Slice Theorem
Suppose we have a 2D image, defined by pixel values f(x,y), 
and its 2D Fourier transform F(kx,ky).

The Projection Slice theorem says that the Fourier transform of p(x)
is one slice through F(kx, ky), along the kx axis which is parallel to the 
projection axis (the x axis).

      2,0 xj xk
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
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This is the basis for 
tomographic image 
reconstruction, as in 
CAT scans.

We can define the projection of this image 
onto any axis (say, the x axis) as the sum 
along lines perpendicular to the x axis:
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