
21. Propagation of Gaussian beams
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A laser beam can be described by this:

where u(x,y,z) is a Gaussian transverse profile that varies 

slowly along the propagation direction (the z axis), and 

remains Gaussian as it propagates:
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The parameter q is called the “complex beam parameter.”  

It is defined in terms of two quantities:

w, the beam waist, and

R, the radius of curvature of the 

(spherical) wave fronts



x axis

on this circle, 

I = constant

The spot is Gaussian:

And its size is 

determined by

the value of w.
y
 a

x
is

Gaussian beams

   
 

2 2

2

1
, , , , , exp

x y
E x y z t u x y z

q z w

 
   

 

 
 

2
2 2

2

1
, , ~ exp 2

x y
I x y z

q z w

 
 

 

The magnitude of the electric field is therefore given by:

with the corresponding intensity profile:



Propagation of Gaussian beams

At a given value of z, the properties of the Gaussian beam 

are described by the values of q(z) and the wave vector.

So, if we know how q(z) varies with z, then we can determine 

everything about how the Gaussian beam evolves as it 

propagates.

Suppose we know the value of q(z) at a particular value of z.

e.g.  q(z) = q0 at z = z0

This determines the evolution of both R(z) and w(z).

Then we can determine the value of q(z) at any 

subsequent point z1 using:

q(z1) = q0 + (z1 - z0)



Propagation of Gaussian beams - example

Suppose a Gaussian beam (propagating in empty space, wavelength ) 

has an infinite radius of curvature (i.e., wave fronts with no curvature at 

all) at a particular location (say, z = 0).

Suppose, at that location (z = 0), the beam waist is given by w0.

Describe the subsequent evolution of the Gaussian beam, for z > 0.

We are given that R(0) = infinity and w(0) = w0.  So, we can determine q(0):
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NOTE: If R =  at a given location, this implies that q is a pure 

imaginary number at that location: this location is a focal plane.
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The Rayleigh range

where zR is the “Rayleigh range” - a key parameter in 

describing the propagation of beams near focal points.

If w0 is the beam waist at a focal point, then 

we can write q at that value of z as:
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It is, roughly, the focal spot area divided by .

Now, how does q change as z increases?



Propagation of Gaussian beams - example

A distance z later, the new complex beam parameter is:
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• At z = 0, R is infinite, as we assumed.

• As z increases, R first decreases from 

infinity, then increases.

• Minimum value of R occurs at z = zR.

• At z = 0, w = w0, as we assumed.

• As z increases, w increases.

• At z = zR, w(z) = sqrt(2)×w0.
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Reminder:



beam waist at 

z = 0: R = 

w0
w(z)

R(z)

Rayleigh range and confocal parameter

 Confocal parameter b = 2 zR

zR

b = 2zR

 Rayleigh range zR = the distance from the focal point where the beam 

waist has increased by a factor of        (i.e., the beam area has doubled).2

w002w
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Propagation of Gaussian beams - example

R(z)/zR
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Note #2: positive values of R

correspond to a diverging beam, 

whereas R < 0 would indicate a 

converging beam.

Note #1: for distances larger 

than a few times zR, both the 

radius and waist increase linearly 

with increasing distance.

When propagating away 

from a focal point at z = 0:



A focusing Gaussian beam

zR
zR

At a distance of one Rayleigh range from the focal plane, the wave 

front radius of curvature is equal to 2zR, which is its minimum value.

These are also the points at which the beam spot’s area has doubled.



What about the on-axis intensity?

We have seen how the beam radius and beam waist 

evolve as a function of z, moving away from a focal 

point.  But how about the intensity of the beam at its 

center (that is, at x = y = 0)?
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At a focal 

point, w = w0

Here, w = 3.15w0
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The peak drops as the width 

broadens, such that the 

area under the Gaussian 

(total energy) is constant.

The peak intensity drops by 

50% after one Rayleigh range.



Suppose, at z = 0, a Gaussian beam has a waist of 50 mm 

and a radius of curvature of 1 cm.  The wavelength 

is 786 nm.  Where is the focal point, and what is the 

spot size at the focal point?

At z = 0, we have:  24
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The focal point is the point at which the radius of curvature is infinite, 

which (as we have seen) implies that q is imaginary at that point.

q(z) = q0 + z Choose the value of z such that Re{q} = 0
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This gives w = 42 mm.

Propagation of Gaussian beams - example #2



Aperture transmission
The irradiance of a Gaussian beam drops dramatically 

as one moves away from the optic axis.  How large must 

a circular aperture be so that it does not significantly 

truncate a Gaussian beam?

Before aperture After aperture

Before the aperture, the radial variation of the irradiance 

of a beam with waist w is:
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where P is the total power in the beam:  
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Aperture transmission

If this beam (waist w) passes through a circular aperture 

with radius A (and is centered on the aperture), then:

fractional power transmitted 
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A = w

~86%

~99%

A = (/2)w
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Focusing a Gaussian beam

The focusing of a Gaussian beam can be regarded as the reverse of 

the propagation problem we did before.

d0

D

A Gaussian beam focused by 

a thin lens of diameter D to a 

spot of diameter d0.

How big is the focal spot?

Well, of course this depends on how we define the size of the focal spot.  If 

we define it as the circle which contains 86% of the energy, then d0 = 2w0.

Then, if we assume that the input beam completely fills the 

lens (so that its diameter is D), we find:
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where f# = f/D is the f-number of the lens.

It is very difficult to construct an optical system with f# < 0.5, so d0 > .



Depth of field

a weakly focused beam

a tightly focused beam

small w0, small zR
larger w0, larger zR

Depth of field = range over which the beam remains  

approximately collimated 

= confocal parameter (2zR)

Depth of field  2
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If a beam is focused to a spot N wavelengths in diameter, then 

the depth of field is approximately N2 wavelengths in length.

What about my laser pointer?  = 0.532 mm, and f# ~ 1000

So depth of field is about 3.3 meters.



f/# = 32 (large depth of field)

f/# = 5 (smaller depth of field)

Depth of field: example



The q parameter for a Gaussian beam evolves according 

to the same parameters used for the ABCD matrices!

Gaussian beams and ABCD matrices

Optical system ↔ 2x2 Ray matrix
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If we know qin, the q parameter at the input of the optical 

system, then we can determine the q parameter at the 

output:



Gaussian beams and ABCD matrices

Example: propagation through a distance d of empty space
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The q parameter after this propagation is given by:
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which is the same as what we’ve seen earlier: 

propagation through empty space merely adds to 

q by an amount equal to the distance propagated.

But this works for more complicated optical systems too.



Gaussian beams and lenses
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Example: propagation through a thin lens:
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So, the lens does not modify the imaginary part of 1/q.

The beam waist w is unchanged by the lens.

The real part of 1/q decreases by 1/f.  The lens changes 

the radius of curvature of the wave front:
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Assume that the Gaussian beam has a focal spot located a distance 

do before the lens (i.e., at the position of the “object”).

Gaussian beams and imaging

Example: an imaging system
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win = beam waist at the 

input of the system

Question: what is wout?  (the beam waist at the image plane)
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(M = magnification)

(matrix connecting 

the object plane to 

the image plane)
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If we want to find the beam waist at the output plane, we must 

compute the imaginary part of 1/qout:

2 2 2

1 1 1
Im

out R inq M z M w




 
     

 

This quantity is related to the beam waist at the output, because:

So the beam’s spot size is magnified by the lens, just as we would 

have expected from our ray matrix analysis of the imaging situation.
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Gaussian beams and imaging

Interestingly, the beam does not have     at the output plane. R

in Rq j z 



Higher order Gaussian modes
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The Gaussian beam is only the lowest order (i.e., simplest) solution.  

The more general solution involves Hermite polynomials:

where the first few Hermite polynomials are:  
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And, in general, the x and y 

directions can be different!
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The Gaussian beam we have discussed corresponds to 

the values n = 0, m = 0 - the so-called “zero-zero” mode.



Higher order Gaussian modes - examples

x y

|u(x,y)|2

10 mode

x y

|u(x,y)|2

01 mode

x y

|u(x,y)|2

12 mode

x y

|u(x,y)|2

A superposition of the 10 and 

01 modes: a “donut mode”


