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Laser Basics
Einstein A and B coefficients

Two, three, and four levels – rate equations

Gain and saturation

Slope efficiency



The boundaries between regions are a bit arbitrary…

All of these are electromagnetic waves.  The amazing diversity is a result of the fact that 
the interaction of radiation with matter depends on the frequency of the wave.

The electromagnetic spectrum



Most light in the universe is emitted by atomic 
and molecular vibrations.

Electrons vibrate in their 
motion around nuclei.

High frequency: 
~1014 - 1017 Hz

Nuclei in molecules vibrate 
with respect to each other. 

Intermediate frequency: 
~1011 - 1013 Hz

Nuclei in molecules rotate.
Low frequency: 

~109 - 1010 Hz



ground state

excited state

Quantum 
energy levels

Absorption: promotes an electron from the ground to the excited state
Emission: drops the electron back to the ground state

Conservation of energy:    Eexcited - Eground = Ephoton

"spontaneous emission"  - the decay of an excited state to the ground state 
with the corresponding emission of a photon

The two-level system



Actually, there are three types of interactions

•Promotes molecule to a higher energy state
•Decreases the number of photons

•Molecule drops from a high energy state to a lower state
•Increases the number of photons

•Molecule drops from a high energy state to a lower 
state
•The presence of one photon stimulates the 
emission of a second one
•This process has no analog in classical physics - it 
can only be understood with quantum mechanics!

Absorption 

Spontaneous Emission 

Stimulated Emission

key idea: conservation of energy Before After

Unexcited 
molecule

Excited 
molecule



Einstein A and B Coefficients
In 1916, Einstein considered the various transition rates between 
molecular states (say, 1 and 2) involving light of irradiance, I:

Spontaneous emission rate  =  A N2

Absorption rate  =  B12 N1 I

Stimulated emission rate  =  B21 N2 I

at frequency 

With this, we can write a rate equation for the population density of 
the two states. For the upper level:
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As a result of a perturbation h(t), a system in quantum state 1 
makes a transition to quantum state 2 with probability given by:
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The transition probability from state 1 to state 2 is:

Key example:  suppose we subject a two-level system, initially in 
state 1, to a harmonic perturbation (like a light wave), of the form:
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(and suppose that the frequency of 
the perturbation, ,  is close to 21)

We can make a connection between B12 and B21 using a quantum 
mechanical argument based on time-dependent perturbation theory.

Einstein B Coefficients
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On a per-atom, per-photon basis:
Absorption and stimulated 
emission are equally likely!
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Einstein B Coefficients are equal

Evaluating this integral:

(neglecting the 2nd term is called 
the “rotating wave approximation”)

The Einstein coefficients B12 and B21 are equal.



spontaneous emission: 
photons go 

in all directions

Stimulated emission: photons go only 
into the direction of the incident light

Back to our rate equation analysis
2
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So, we can ignore the spontaneous emission contribution to 
the photon number, which thus varies according to:
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Population inversion

Number of photons grows exponentially
with propagation distance z, if  N2 > N1 This condition is known as 

“population inversion”.

Population inversion is a necessary condition 
for lasing to occur between levels 1 and 2.

1 2( )dI BI N N
dt

   1 2 1 2( ) ( ) /
0 0

B N N t B N N nz cI I e I e    

A common definition: the gain (or absorption) cross-section:
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If N2 > N1:

If N2 < N1 :

1N
  units of  are m2 (i.e., area)

 is something like the absorption 
per molecule.  It is the effective 
size (area) of a molecule as seen 
by an incoming photon.

g = gain coefficient
 = absorption coefficient0 0 or  z gzI e I e



Population inversion is impossible in equilibrium.

Population inversion is impossible in steady-state.

Population inversion isn’t easy to achieve

In thermal equilibrium, we can use Boltzmann statistics:
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In any steady-state situation, the derivative is zero:
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Rate equations for atomic population, continued
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If the total number of molecules is N:

total population (per cm3)

population difference (per cm3)



How does the population difference 
depend on pump intensity?

0 2BI N AN A N     In steady-state:
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Isat is called the saturation intensity.
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Why inversion is impossible in 
a two-level system

2

1

N2

N1

LaserPump

It’s impossible to achieve a steady-state inversion in a two-level system!

Why?  Because absorption and stimulated emission are equally likely. 

1 2 /
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 sat

NN
I I

Population difference

Recall that 1 2N N N  

For population inversion, we require 0 N

N is always positive, 
no matter how hard we 
pump on the system!  
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a plot of this function

Even for an infinite pump intensity, the 
best we can do is N1 = N2 (i.e., N = 0)
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Rate equations for a 
three-level system

So, if we can’t make a laser using two 
levels, what if we try it with three?

Assume we pump to a state 3 that 
rapidly decays to level 2.

2
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1 2

dN BIN AN
dt

  

1 22 2d N BIN AN
dt

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Fast decay

Laser 
Transition

Pump 
Transition

1

2
3

1 2N N N  
1 2N N N 

The total number 
of molecules is N:

Level 3 
decays 
fast and 
so N3 = 0.

22N N N 

12N N N  
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Why inversion is possible in 
a three-level system

Now if  I  > Isat,  N is negative! 

1 /
1 /

sat

sat

I IN N
I I


 


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Isat is the saturation intensity.
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dt

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In steady-state: 0 BIN BI N AN A N      

Fast decay

Laser 
Transition

Pump 
Transition

1

2
3

 
 

1
1


  
 

B A IA BIN N N
A BI B A I

Solve for N:
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Rate equations for a four-
level system

Now assume the lower laser level 1 
also rapidly decays to a ground level 0.

2
2 2( )dN BI N N AN

dt
  

Laser 
Transition

Pump 
Transition

Fast decay

Fast decay

1

2

3

02
0 2

dN BIN AN
dt

 As before:

d N BIN BI N A N
dt


     

At steady state: 0 BIN BI N A N    

0 2N N N 

The total number 
of molecules is N :

0 2N N N 1 0,N  2N N  Because
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Why inversion is easy in 
a four-level system

0 BIN BI N A N    

Now, N is negative—for any non-zero value of I!

Laser 
Transition

Pump 
Transition

Fast decay

Fast decay

1

2

3

0
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/satI A Bwhere:
Isat is the saturation intensity.
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Solve for N:
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Two-, three-, and four-level systems

Two-level 
system

Laser 
Transition

Pump 
Transition

At best, you get 
equal populations. 

No lasing.

Four-level systems are best.

Four-level 
system

Lasing is easy!

Laser 
Transition

Pump 
Transition

Fast decay

Fast decay

Three-level 
system

If you hit it hard, 
you get lasing.

Laser 
TransitionPump 

Transition

Fast decay
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Population inverstion in two-, three-, 
and four-level systems

0 2Isat 4Isat 6Isat 8Isat 10Isat

0

N

-N

population 
inversion

2 levels

3 levels

4 levels

intensity of the pump

population 
difference 

N



Many lasers are almost 
ideal 4-level systems

For example, green laser 
pointers are Nd+3:YAG lasers.  
The energy levels of Nd+3

constitute a classic example of 
a four-level system.

Infrared laser emission 
is converted to green 
light by a nonlinear 
optical process:
frequency doubling!
(to be discussed later 
this semester)
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What is the saturation intensity?
A is the excited-state relaxation rate:  1/

/satI A B B is the absorption cross-section, , divided by 
the energy per photon, ħ:  / ħ




satI 


The saturation intensity plays a key role in laser theory.  It is the 
intensity which corresponds to one photon incident on each molecule, 
within its cross-section , per recovery time .

Both  and  depend 
on the molecule, and 
also the frequency of 
the light.

ħ~10-19 J for visible/near IR light

~10-12 to 10-8 s for molecules

~10-20 to 10-16 cm2 for molecules (on 
resonance)

105 to 1013 W/cm2

For Ti:sapphire, Isat ~ 300 kW/cm2



There are 3 conditions for steady-state laser operation.

Amplitude condition

Phase condition

Transverse spatial mode condition

x y

|E(x,y)|2



Amplitude condition: gain must exceed loss
Having a population inversion (N < 0) isn’t enough.  Additional 
losses in intensity occur, due to absorption, scattering, and 
reflections.  Also, there is an output beam…                                                   

a laser medium with gain, 
G = exp(gL)

The laser will lase if the beam maintains 
its intensity after one round trip, that is, if: Gain = Loss

3 0 0exp( ) exp( )I I gL R gL I 
This means: I3 = I0.  Here, it means a condition on I3:

Mirror with
R < 100%

Mirror with
R = 100%

I0I1

I3I2

output

L

In this expression, we are ignoring sources of loss other than the mirror reflectivity R.  
This is an approximation, because there are always other sources of loss.



1 ln(1/ )
2

g R
L

 

This is the minimum value of the gain which is required in order to turn 
on a laser.  This can be thought of as a threshold gain value, gthreshold.

Now, recall that the gain is proportional to the population inversion:

N < 0 is necessary, but not sufficient.
Solving for g, we find:

 2 1
1 1
2 2

g N N N      If N2 > N1:

Thus, there is a threshold value of the population inversion 
which is required:

1 1ln 0
2thresholdN

L R
         
   

remember: N < 0 
for a population 
inversion, so g > 0.

N < 0 is not 
sufficient to make the 
laser operate. We 
need N < Nthreshold.



0 2Isat 4Isat 6Isat 8Isat 10Isat

0

N

-N

Below this line, 
population 
inversion

2 levels

3 levels

4 levels

intensity of the pump

population 
difference 

N
lasing!

Nthreshold

A threshold value of pump intensity

minimum pump 
intensity required 
to turn on a 4-level 
laser, Ithreshold Can we estimate the value of  Ithreshold?
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Even for a four-level system, lasers 
have a threshold pump intensity, in 
order to achieve sufficient gain to 
overcome the loss and begin to lase.

Achieving Laser Threshold in a four-
level system
For a four-level system:

If the pump intensity is low (well below 
the saturation intensity), then this can be 
approximated by:

pump

sat

I
N N

I
  

i.e., population inversion is negative and proportional to the pump intensity.

ln(1/ )
2

 sat
th

II R
NL

This is valid if the output 
coupler (with R < 1) is the 
only source of loss.

0 2Isat 4Isat 6Isat 8Isat
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N

-N

4-level system

intensity of the pump

N

At low pump intensity 
I << Isat, the exact 
curve can be 
approximated by a 
straight line.



Lasing behavior above threshold

So, for pump intensities above threshold but well below the 
saturation regime, we have:

output power pump powerg N   

As we turn up the pump (from zero), there will be essentially no 
laser photons until we reach threshold.  At that point, the laser 
turns on.  

Then, the output power increases linearly with the pump power, 
until the pump approaches and exceeds Isat.

 1out circulatingI R I g   Thus: i.e., the power emerging from 
the laser varies linearly with g.

In most lasers, the product gL is a small number - the gain per pass 
through the gain medium is small. Then the gain per pass, egL, is 
approximately equal to: 1 + gL. The power circulating inside the laser 
is therefore proportional to the gain g.



Essentially all lasers exhibit this 
behavior.  Here’s an example: 
the silicon laser (2005)

In these data, you can see all 
three regimes: below threshold, 
above threshold, and saturation

Slope efficiency

pump powerou
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threshold

Above threshold (but not too far above), the output laser 
power is proportional to the input pump power.

The concept of slope efficiency only applies for Ith < Ipump << Isat

The slope of this line is called the 
“slope efficiency” of the laser.

For example, a slope efficiency of 50% means 
that for every two additional pump photons we 
add, one additional laser photon is generated.
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There are 3 conditions for steady-state laser operation.

Amplitude condition

Phase condition

Transverse spatial mode condition

x y

|E(x,y)|2



Another steady-state condition: the phase
In addition to requiring that gain exceed loss, (i.e., that the 
laser field amplitude must be constant on each round trip) we 
also require that the phase of the laser field must reproduce 
itself on each round trip.

round trip length LRT

  1/exp
)(
)(

 cLj
Eangle
Eangle

RT
before

after  m
L

c

RT
m 

 2

(m = an integer)

Only certain specific frequencies can satisfy this condition and lase.

Since                , this is the same as saying that an integer number of 

wavelengths must fit in the cavity.

2 c

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These are called the axial or longitudinal
modes of the laser cavity.

m
L

c

RT
m 

 2

(m = an integer)

Longitudinal modes

single-mode laser - a laser which lases at only one frequency.  Only 
one longitudinal mode lases.

multi-mode laser - when more than one longitudinal mode lases. Most 
lasers are multi-mode lasers.

space between 
adjacent modes: 

RTL
cv 

This is the inverse of the 
cavity round-trip time

0

laser gain vs frequency

They form a ‘picket fence’, an equally 
spaced set of discrete frequencies.

frequency



Longitudinal modes
The number of modes 
oscillating inside a laser 
depends on the mode 
spacing , and how it 
compares to the spectral 
width of the gain curve –
in other words, the range 
of frequencies where the 
gain is large.

All modes that experience 
gain > loss will lase.

This number can range 
from one or just a few all 
the way up to millions.

gain profile
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