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3. Spectral line shapes and how to model them

Some properties of our favorite gain medium: Ti:sapphire
excited state lifetime (radiative, non-radiative)
fluorescence line width

Classical electron oscillator model for spectral line shapes

The connection between  and experimentally 
measureable parameters

Absorption (or gain) cross-section

Wavelength (nm)
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Steps 1 and 2:
Combine to give an effective
pumping rate for level 2: Rp

Step 3:
• stimulated transitions due to Ilaser
• spontaneous decay rate: 21
reminder: this is the Einstein A coefficient

Lasing transition

Step 4:
• spontaneous decay rate: 10
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A more careful analysis of the 4 level system
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Here, we include the lifetimes of 
the upper and lower lasing levels.



Recalling that Isat = A/B, we find the steady-state solution:

This relation between lifetimes is therefore a
necessary condition for lasing
(the lower lasing level has to empty out faster than the upper one)

Key result:
Population inversion (i.e., N < 0) is assured if    

(no matter what Ilaser is, and even if Rp is small)

Of course, there are other necessary conditions, e.g.:
• a resonant cavity - provides feedback and defines modes
• net gain per round trip > net loss per round trip (threshold)

The four-level model
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Steady-state population inversion
This expression allows us to define N0:

which is the population inversion that is achieved in the case 
where the laser intensity is zero (below threshold), or is 
positive but much smaller than the saturation intensity (i.e., 
when the laser is operating in the linear regime)

Note that it is directly proportional to the pump rate Rp.

And it is always negative if 10 > 21.



Absorption and emission 
spectra of Ti:sapphire

Upper level lifetime: 
21 = 3.2 sec

 21 = rad + nr = 3.13 × 105 sec-1

2.6 × 105 sec-1 5.3 × 104 sec-1

Ti:sapphire – absorption and emission
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Lasing transition

So: radiative 
transitions are about 
5 times more likely 
than non-radiative 

ones.



Material 21 (s) 
Ti:sapphire 3.2
Alexandrite (Cr:BeAl2O4) 260
Nd:YAG 230
Nd:YLF 450
Nd:glass 300
Cr:LiSAF 67

So why is Ti:sapphire the most useful for femtosecond pulses?

Some solid-state laser materials

Recall: a larger 21 = easier to make a laser



Ti:sapphire - the femtosecond workhorse
crystal structure of sapphire, Al2O3
Hexagonal system, rhomboidal class 3m

To make Ti:sapphire: replace a fraction of the Al atoms by Ti.



Fabrication:  Ti3+ ions replace ~0.1% of the Al3+ ions in the sapphire lattice

Ti3+ ions sit at the center of an octahedral site, with 
six O2- atoms around, one at each apex.

Ti

O2-

O2-

O2-

O2-

O2-

O2- Electronic configuration of Ti3+:  [Ar]3d1

Effectively a one-electron system

Lasing transition of Ti:sapphire

Crystal field of the oxygen atoms splits the 
10 degenerate 3d states:

This energy 
splitting is about 
1.5 eV (~800 nm)



The energies of both the E (upper doublet) and T 
(lower triplet) states depend on the Ti-O bond length:

Ti:sapphire is a ‘vibronic gain medium’

Displacement
of the Ti3+ ion

These are fast
(~100 fsec) 
processes.



200 nm
bandwidth!

Wavelength (nm)

Single-frequency emission?

How do we describe frequency-dependent effects?

Simplest model: classical electron oscillator - treat the electronic state 
as a classical dipole (a charge on a spring)

Eapplied(t)
nucleus electron

What about this fluorescence line?



The Forced Oscillator model
Consider an electron on a spring with position xe(t), and 
driven by an incident light wave, E0 exp(jt):

The forces on the electron are:
1. The restoring force of the spring: kspringxe
2. The force exerted by the electric field: eE

Eapplied(t)
nucleus electron

This model was first proposed by 
Hendrik Lorentz in the 1890’s. 
Hence it is known as the

“Lorentz oscillator model”
Hendrik Lorentz

1853-1928
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
the “resonance 
frequency” of 
the spring

this  is the frequency 
of the light wave

Use Newton’s Law, F = ma, to 
write down an equation of motion 
for the electron:

Eapplied(t)
nucleus electron

We generally envision that the frequency of the light wave can be 
varied, but the resonant frequency of the atom is a fixed constant.

Lorentz Oscillator model



The standard way to solve a DE: guess the solution, and see if it works.
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Plug into the equation:

Our guess is indeed a solution, but only if the factor A satisfies:
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So the electron oscillates at the frequency of the incident light wave (), but 
with an amplitude that depends on the light wave’s frequency .

Thus the solution is:    
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Amplitude and phase response
How does the amplitude (and phase) of the motion of the 
charge depend on the frequency of the incident light wave?
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Question: what if the light wave oscillates at frequency  = 0?

ph
as

e 
of

 x
e 
re

la
tiv

e 
to

 th
e 

ph
as

e 
of

 th
e 

in
ci

de
nt

 li
gh

t w
av

e
angular frequency



0





The Damped Forced Oscillator
A damped forced oscillator is a harmonic oscillator experiencing a 
sinusoidal force and friction.  It is not realistic to ignore friction.

2  e
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We must add a frictional drag term, 
proportional to the velocity of the electron:
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The solution is:

The electron oscillates at the frequency of the incident light wave (), 
but with an amplitude and a phase that both depend on .

complex!
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Why we included the damping factor, 
Atoms spontaneously decay to the ground state after a time.

Also, the net vibration of a medium is the sum of the vibrations of 
all the atoms in the medium.

Atom #1

Atom #2

Atom #3

Sum:

time

Collisions “dephase” 
the vibrations, causing 
cancellation of the total 
medium vibration, 
typically exponentially.

The time constant of 
this exponential decay 
is the inverse of the 
damping factor:
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The line shape: a complex Lorentzian
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Our solution 
then becomes:

This factor is called 
a “complex Lorentzian”

the incident 
light field

We can now rewrite xe(t) in a more compact form, 
using the following definition:   
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Our solution for xe(t):



Phase
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Plots of the complex Lorentzian

Amplitude

 (which is  = 0)

At low 
frequencies: 
phase ~ 0

At high 
frequencies: 
phase ~ 180°

In terms of 
its amplitude 
and phase.
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ImaginaryReal

Plots of the complex Lorentzian
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In terms of its 
real and 
imaginary parts.

There is a good analogy between 
the behavior of a mass on a 
spring and the behavior of an 
electron in an atom, even though 
atoms are quantum systems and 
the spring system is classical.

The Lorentz oscillator model is 
surprisingly general!

It shows up in many different 
places (recall RLC circuits)



Maxwell's Equations in a Medium

The induced polarization,    , is the vector field which describes the 
response of the atoms to the applied field:
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…and we’ve just seen a way to compute this!
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where       is given by:

where N is the number density of charges, e is the charge per particle, 
and xe(t) is the displacement of each charge vs. time along the x axis. 



The Electric Polarization
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Recall our expression for xe(t):
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which serves to define the (dimensionless) susceptibility .

The quantity 0is the proportionality constant between the 
induced polarization and the E field that induced it.

And the dielectric permittivity of a medium is given by:  0 1   



The wave equation with polarization
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Here, we’re looking at one 
component of the vector E
and P fields, so we’ve 
dropped the vector symbol.

This equation is known as the "Inhomogeneous Wave Equation."

The polarization is a ‘source term’, which modifies the wave that 
solves Maxwell's equations

We must first include the induced polarization in Maxwell's equations, 
i.e., the Wave Equation:
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P
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Note: Since P(t) = Nex(t), the 2nd derivative        

is related to the charge acceleration. 

Accelerating charges emit light!
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We just saw that the electric susceptibility is the proportionality constant 
between polarization and the E field that induces it:

P = 0  E
So the wave equation becomes:
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which becomes:

Solving the inhomogeneous wave equation

This wave equation describes the propagation of waves in a medium in 
which the polarization is proportional to the electric field (which is almost 
universally true).



This looks just like the wave equation in empty space, except for 
a modification of the wave velocity:
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Solving the inhomogeneous wave equation
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Therefore we can solve the equation by simply modifying the 
well-known solution for waves in empty space:



Waves in a linear medium
The solution in empty space:
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by substituting                         , becomes the solution in a medium:0
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refractive index absorption 
coefficient
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This solution contains the two well-known material constants which 
together characterize the propagation of light in the medium:

Waves in a linear medium
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Absorption causes
attenuation of the field 
with increasing z

Refractive index 
changes the k-vector

Note: if  = 0 and n = 1, this reduces to the familiar result for waves in 
empty space:
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Absorption and the susceptibility 
We have seen that the absorption coefficient of a medium is related to 

the imaginary part of the complex susceptibility:

The Lorentz oscillator model gave us an expression for the 
susceptibility:
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Plugging this in to the expression above for , we find:

i.e., the absorption peaks at the resonance of
the two-level transition. The spectral width is
set by the damping.



Refractive Index and the susceptibility 
In the case of a time varying E-field (i.e., a light wave), the oscillating 

polarization can be out of phase with the oscillating E field.
Thus, it is not surprising that the susceptibility must be a complex 

quantity. 
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As we just saw, the refractive index of a medium comes from the real 
part of :

The Lorentz oscillator model gave us an expression for the 
susceptibility. Plugging it in to this, we find:
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Refractive Index and the Speed of Light

/ ( ) ( / ) /c nk k n  

Note: often people don’t write the subscript 0 on c, even when they mean c0.

The speed of light is /k.  Since k becomes nk in a medium,

where c0 is the speed of light in vacuum.

• The refractive index is (almost) always > 1.

So LIGHT SLOWS DOWN inside materials.

(But it can be < 1. This appears to violate Relativity, but it doesn’t.)

0 /c c n

• The refractive index generally depends on frequency.

So the speed of light in materials also depends on frequency.



Refractive Index and the permittivity 
We have just seen that n = c0/c

But we also know from the wave equation that the speed of light is given by:
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In optics, we rarely deal with magnetic 
materials, so we can take  = . So:

The relative permittivity is equal to the square of the refractive index.
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“normal dispersion” : 0
dn
d

“anomalous dispersion” : 0
dn
d

Anomalous dispersion often occurs 
at frequencies where absorption is 
large (but not always).

Refractive index

0

Frequency, 

Dispersion: n depends on 
The word “dispersion” refers to the frequency-dependence of the 
refractive index of a medium.

We typically distinguish two particular cases.

Normal dispersion is only called “normal” because it is more 
commonly observed, not because there is anything more ‘normal’ 
about it.



Refractive indices of various types of glass
Note
As  increases, the 
index decreases. Thus: 0
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(which implies that d/d < 0)
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These line shape functions were derived under the assumption that 
all of the participating atoms start out in their lower levels.  So the 
factor of N in these expressions is “total number of atoms per m3”.

But in a laser, we strive to put a significant fraction (more than half) of 
the atoms in the upper level (population inversion), by pumping.

So in a medium under optical pumping (e.g., the gain medium of a 
laser),  and n should really be written as proportional to N = N1 – N2, 
not just to N.

What about population inversion?



The line shape functions 
including population 
difference:
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absorption becomes gain
when the sign of N changes!

Written in terms of cross-section:


