The Generation of Eltrashort Laser Pulses

Spatial modes

The phase condition, revisited

Trains of pulses - the Shah function

Laser modes and mode locking
Homogeneous vs. inhomogeneous gain media

Classical electron oscillator line shapes

In a material where a significant fraction of the atoms are in an excited state, we must include the population difference factor ΔN in place of N :

Lorentzian line shape:
(approximate)

$$
\begin{aligned}
& \alpha(\omega) \propto \frac{\Delta N}{1+\zeta^{2}} \quad \begin{array}{l}
\text { absorption becomes gain } \\
\text { when the sign of } \Delta \mathrm{N} \text { chan }
\end{array} \\
& n(\omega) \propto \Delta N \frac{\zeta\left(\omega-\omega_{0}\right)}{1+\zeta^{2}}
\end{aligned}
$$ when the sign of ΔN changes!

α and n both depend on frequency

These functions are, together, a Complex Lorentzian (with some constants in front).

Frequency, ω

$$
\alpha \propto \frac{\Gamma}{\left(\omega_{0}-\omega\right)^{2}+\Gamma^{2}} \quad n-1 \propto \frac{\left(\omega_{0}-\omega\right)}{\left(\omega_{0}-\omega\right)^{2}+\Gamma^{2}}
$$

There are 3 conditions for steady-state laser operation.

Amplitude condition
Phase condition
Transverse spatial mode condition
$\mid \mathrm{E}(\mathrm{x}, \mathrm{y}) \mathrm{I}^{2}$

Condition on the transverse profile

Steady-state condition \#3:

> Transverse profile reproduces on each round trip
"transverse modes": those which reproduce themselves on each round trip, except for overall amplitude and phase factors

Determining these modes can be cast as an eigenvalue problem:

$$
\begin{gathered}
\beta_{\mathrm{nm}} \cdot \mathrm{E}_{\mathrm{nm}}(\mathrm{x}, \mathrm{y})=\iint_{\text {propagation kernel }} \mathrm{K}\left(\mathrm{x}, \mathrm{y} ; \mathrm{x}_{0}, \mathrm{y}_{0}\right) \cdot \mathrm{E}_{\mathrm{nm}}\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right) \mathrm{dx}_{0} \mathrm{dy}_{0} \\
\\
\end{gathered}
$$

Transverse modes

Solutions are the product of two functions, one for each transverse dimension:

$$
E_{n m}(x, y)=u_{n}(x) \cdot u_{m}(y)
$$

where the u_{n} 's are Hermite Gaussians:

$$
\left|u_{n}(x)\right|=H_{n}\left(\frac{\sqrt{2} x}{w}\right) \cdot \exp \left(-\frac{x^{2}}{w^{2}}\right) \quad \begin{aligned}
& w=\text { beam } \\
& \text { waist } \\
& \text { parameter }
\end{aligned}
$$

Notation:
"TEM" = transverse electric and magnetic
" $n m$ " = number of nodes along two principal axes

Transverse modes - examples

12 mode

A superposition of the 10 and 01 modes: the "donut mode"

TEM13

http://www.physics.adelaide.edu.au/optics/

There are 3 conditions for steady-state laser operation.
Amplitude condition
Phase condition
Let's revisit this one...

Transverse spatial mode condition

Phase condition

Steady-state condition \#2:

Phase is invariant after each round trip

$\frac{\operatorname{angle}\left(E_{\text {after }}\right)}{\operatorname{angle}\left(E_{\text {before }}\right)}=\exp \left(-i \omega L_{r t} / c\right)=1 \quad \omega_{q}=\frac{2 \pi c}{L_{r t}} \cdot q \quad(\mathrm{q}=$ an integer $)$
Technically, this should be:
$\left(L_{r t}-2 L_{m}\right) n_{\text {air }}+2 L_{m} n_{\text {sapphire }}$
And for a general laser layout, this is often written: $L_{r t} n_{\text {effective }}$

An integer number of wavelengths must fit in the laser cavity.

Longitudinal modes

But how does this translate to the case of short pulses?

Mode locking

For a laser with multiple modes lasing simultaneously, the output is the superposition of all of these modes.

If we can "lock" all of these phases together, we get a short pulse!

Techniques for doing this are called "mode locking". They can be used to generate absurdly short pulses (the more modes that are locked, the shorter the pulse).

Random phases of all laser modes

Irradiance vs. time

How short is "absurdly short"?
10 femtoseconds is to one second as one second is to 3.1 million years.

Short optical pulses are the fastest events ever created (or measured)

The spectrum of a single pulse

The uncertainty principle says that the product of the temporal and spectral pulse widths is greater than ~ 1. So a short pulse has a broad bandwidth.

But femtosecond lasers do not emit just one single pulse...

Femtosecond lasers emit trains of (nominally) identical pulses.

Every time the laser pulse hits the output mirror, some of it emerges.

The output of a typical ultrafast laser is a train of identical very short pulses:

where $I(t)$ represents a single pulse intensity vs. time and T is the time between pulses.

To describe this, we use the Shah Function

The Shah function, $\operatorname{III}(t)$, is an infinitely long train of equally spaced delta-functions.

$$
\operatorname{III}(t) \equiv \sum_{m=-\infty}^{\infty} \delta(t-m)
$$

The symbol III is pronounced shah after the Cyrillic character Ш, which is said to have been modeled on the Hebrew letter (shin) which, in turn, may derive from the Egyptian \{\&?\}, a hieroglyph depicting papyrus plants along the Nile.

The Fourier Transform of the Shah Function

$$
\begin{aligned}
& \mathscr{F}\{\operatorname{III}(t)\}= \\
& =\int_{-\infty}^{\infty} \sum_{m=-\infty}^{\infty} \delta(t-m) \exp (-i \omega t) d t
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{m=-\infty}^{\infty} \int_{-\infty}^{\infty} \delta(t-m) \exp (-i \omega t) d t \\
& \text { If } \omega=2 n \pi \text {, where } n \text { is an integer, the sum } \\
& =\sum_{m=-\infty}^{\infty} \exp (-i \omega m) \\
& \text { diverges; otherwise, cancellation occurs and } \\
& \text { So: } \\
& \mathscr{F}\{\operatorname{III}(t)\} \propto \operatorname{III}(\omega / 2 \pi)
\end{aligned}
$$

The Shah Function and a Pulse Train

An infinite train of identical pulses can be written:

$$
E(t)=\sum_{m=-\infty}^{\infty} f(t-m T)
$$

where $f(t)$ is the shape of each pulse and T is the time between pulses.
But $E(t)$ can also can be written: $\quad E(t)=\mathrm{II}(t / T) * \sqrt{f(t)}^{\text {convolution }}$

Proof:

$$
\operatorname{III}(t / T) * f(t)=\sum_{m=-\infty}^{\infty} \int_{-\infty}^{\infty} \delta\left(t^{\prime} / T-m\right) f\left(t-t^{\prime}\right) d t^{\prime}
$$

To do the integral, set:

$$
t^{\prime} / T=m \text { or } t^{\prime}=m T
$$

$$
=\sum_{m=-\infty}^{\infty} f(t-m T)
$$

The Fourier Transform of an Infinite Train of Pulses

An infinite train of identical pulses can be written:

$$
E(t)=\operatorname{III}(t / T) * f(t)
$$

The Convolution Theorem says that the Fourier Transform of a convolution is the product of the Fourier Transforms. So the spectrum of the infinite train of pulses is given by:

$$
S(\omega)=|\tilde{E}(\omega)|^{2}
$$

where:

$$
\tilde{E}(\omega) \propto \operatorname{III}(\omega T / 2 \pi) F(\omega)
$$

The spacing between frequencies (modes) is then $\delta \omega=2 \pi / T$ or $\delta v=1 / T$.

The Fourier Transform of a Finite Pulse Train

A finite train of identical pulses can be written:

$$
E(t)=[\operatorname{III}(t / T) g(t)] * f(t)
$$

where $g(t)$ is a finite-width envelope over the pulse train.

Use the fact that the Fourier transform of a product is a
 convolution...

The spectrum of a short pulse

So where are the modes?

They are there. They are just too close together to resolve with most spectrometers.

Actual Laser Modes

A laser's frequencies are called longitudinal modes.
They're separated by $1 / T=c / 2 L$, where L is the length of the laser.
Which modes lase depends on the gain and loss profiles.

Light bulbs, lasers, and ultrashort pulses

But a light bulb is also broadband.

What exactly is required to make an ultrashort pulse?

Answer:
BOTH a laser with a very broadband output (many modes), and a way to make all the modes have the same phase as each other.

Generating short pulses = Mode-locking

Locking vs. not locking the phases of the laser modes (frequencies)

Mode-locked vs. non-mode-locked light

Mode-locked pulse train:

$$
\begin{array}{rlr}
\tilde{E}(\omega) & =F(\omega) \operatorname{III}(\omega T / 2 \pi) & \begin{array}{c}
\text { A train of } \\
\text { short pulses }
\end{array} \\
& =F(\omega) \sum_{m=-\infty}^{\infty} \delta(\omega-2 \pi m / T)
\end{array}
$$

Non-mode-locked pulse train:
Random phase for each mode

$$
\begin{aligned}
\tilde{E}(\omega) & =\sum_{m=-\infty}^{\infty} F(\omega) \exp \left(i \varphi_{m}\right) \delta(\omega-2 \pi m / T) \\
& =F(\omega) \sum_{m=-\infty}^{\infty} \exp \left(i \varphi_{m}\right) \delta(\omega-2 \pi m / T)
\end{aligned}
$$

Ti:sapphire: how many modes lock?

Therefore mode spacing is $\Delta \nu=\mathrm{c} / \mathrm{L}_{\mathrm{rt}} \approx 100 \mathrm{MHz}$
Q: How many different modes can oscillate simultaneously in a 1.5 meter Ti:sapphire laser?

A: Gain bandwidth $\Delta \lambda=200 \mathrm{~nm} \Rightarrow \Delta v=\left(\mathrm{c} / \lambda^{2}\right) \Delta \lambda \sim 10^{14} \mathrm{~Hz}$

$$
\Delta v_{\text {bandwidth }} / \Delta v_{\text {mode }}=10^{6} \text { modes }
$$

That seems like a lot. Can this really happen?

Homogeneous gain medium

We have seen that the gain is given by:

$$
g(\omega)=\frac{1}{2} \cdot \frac{\Delta N_{0}}{1+I / I_{s a t}} \cdot \frac{\sigma_{0}}{1+\zeta^{2}} \text { where } \zeta=\frac{2\left(\omega-\omega_{0}\right)}{\Gamma}
$$

Suppose the gain is increased to a point where it equals the loss at a particular frequency, ω_{q} which is one of the cavity mode frequencies.

$$
\begin{aligned}
& \text { Q: Suppose the gain is increased } \\
& \text { further. Can it be increased so that the } \\
& \text { mode at } \omega_{\mathrm{q}+1} \text { oscillates in steady } \\
& \text { state? } \\
& \text { A: In an ideal laser, NO! } \\
& \text { At } \omega_{\mathrm{q}} \text {, Gain = Loss! }
\end{aligned}
$$

Inhomogeneous gain medium

Suppose that the collection of 4-level systems do not all share the same ω_{0}

Consider a collection of sites, with fractional number between ω_{0} and $\omega_{0}+\mathrm{d} \omega_{0}$:

$$
d N\left(\omega_{0}\right)=N g\left(\omega_{0}\right) d \omega_{0}
$$

The modified susceptibility is:

$$
\chi(\omega)=\int d \omega_{0} \chi_{h}\left(\omega ; \omega_{0}\right) g\left(\omega_{0}\right)
$$

homogeneous "packets"
(Lorentzian lines)
The "packets" are mutually independent

- they can saturate independently!

Inhomogeneous broadening

Choosing a particular form for $g\left(\omega_{0}\right)$: a Gaussian distribution:

Lorentzian homogeneous

Gaussian inhomogeneous distribution, of

$$
\text { width } \Delta \omega
$$

$$
\begin{aligned}
& \text { line shape } \\
& \chi(\omega)=\int d \omega_{0} \chi_{h}\left(\omega ; \omega_{0}\right) \cdot e^{-4 \ln (2)\left(\frac{\omega_{0}-\bar{\omega}_{0}}{\Delta \omega}\right)^{2}}
\end{aligned}
$$

For strong inhomogeneous broadening ($\Delta \omega \gg \gamma$):

$$
\begin{aligned}
& \chi^{\prime \prime}(\omega)=\text { Gaussian, with width }=\Delta \omega(\text { NOT } \gamma) \\
& \chi^{\prime}(\omega): \text { no simple form, but it resembles } \chi_{\mathrm{h}}^{\prime}(\omega)
\end{aligned}
$$

Examples:
Nd:YAG - weak inhomogeneity
Nd:glass - strong inhomogeneity
Ti:sapphire - absurdly strong inhomogeneity

Spectral hole burning

Q: Suppose the gain is increased above threshold in an inhomogeneously broadened laser. Can it be increased so that the mode at $\omega_{\mathrm{q}+1}$ oscillates in steady state?

New answer: Yes! Each homogeneous packet saturates independently

There are 'holes' burned in the gain spectrum. a priori, these modes are completely independent, and need not have any particular phase relationship to one another

