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The Generation of Ultrashort 
Laser Pulses

Spatial modes

The phase condition, revisited

Trains of pulses – the Shah function

Laser modes and mode locking

Homogeneous vs. inhomogeneous gain media



transition linewidth

In a material where a significant fraction of the atoms are in an excited state, 
we must include the population difference factor N in place of N:
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Classical electron oscillator line shapes



 and n both depend on frequency
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These functions are, together, a Complex Lorentzian (with some constants in front).



There are 3 conditions for steady-state laser operation.

Amplitude condition

Phase condition

Transverse spatial mode condition
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propagation kernel

Steady-state condition #3:

Transverse profile reproduces on each round trip

"transverse modes": those which reproduce themselves on each 
round trip, except for overall amplitude and phase factors

Determining these modes can be cast as an eigenvalue problem:

     nm nm 0 0 nm 0 0 0 0E x, y K x, y; x , y E x , y dx dy   

Condition on the transverse profile
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     ,  nm n mE x y u x u y

Solutions are the product of two functions, one for each 
transverse dimension:

"TEM" = transverse electric and magnetic

"nm" = number of nodes along two principal axes

Notation:
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Transverse modes
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TEM00 TEM01 TEM02 TEM13

http://www.physics.adelaide.edu.au/optics/
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12 mode
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A superposition of the 10 and 
01 modes: the “donut mode”

Transverse modes - examples



There are 3 conditions for steady-state laser operation.

Amplitude condition

Phase condition

Transverse spatial mode condition

x y

|E(x,y)|2

Let’s revisit this one…
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An integer number of 
wavelengths must fit 
in the laser cavity.

Steady-state condition #2:

Phase is invariant after each round trip

length Lm

collection of 4-level systems

Round-trip length Lrt

Phase condition

Technically, this should be:

And for a general laser layout, 
this is often written:
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“axial” or “longitudinal” cavity modes
mode 
spacing: 
 = c/Lrt

0

laser gain 
profile

q
L

c

rt
q 




2
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Longitudinal modes

fits

does not fit

But how does this translate to the case of short pulses?
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The qth mode 
is just:



If we can “lock” all of 
these phases together, 
we get a short pulse!

Mode locking
For a laser with multiple modes lasing simultaneously, the 
output is the superposition of all of these modes.

Techniques for doing this 
are called “mode locking”.  
They can be used to 
generate absurdly short
pulses (the more modes 
that are locked, the 
shorter the pulse).

How short is “absurdly short”?
10 femtoseconds is to one second as one second is to 3.1 million years.
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The spectrum of a single pulse

The uncertainty principle says that the product of the 
temporal and spectral pulse widths is greater than ~1. 
So a short pulse has a broad bandwidth.

But femtosecond lasers do not emit just one single pulse…



Femtosecond lasers emit trains of 
(nominally) identical pulses.

where I(t) represents a single pulse intensity vs. time and T is the time 
between pulses.

Every time the laser pulse hits the output mirror, some of it emerges.

The output of a 
typical ultrafast laser 
is a train of identical 
very short pulses:

R = 100% R < 100%

Output 
mirror

Back 
mirror

Laser medium

t
-3T -2T 0 T 2T 3T-T

Intensity 
vs. time

I(t) I(t-2T)



To describe this, we use the Shah Function
The Shah function, III(t), is an infinitely long 
train of equally spaced delta-functions.
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The symbol III is pronounced shah after the Cyrillic character     , which is 
said to have been modeled on the Hebrew letter        (shin) which, in turn, 
may derive from the Egyptian         , a hieroglyph depicting papyrus plants 
along the Nile.



If  = 2n, where n is an integer, the sum 
diverges; otherwise, cancellation occurs and 
the sum vanishes. 
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The Fourier Transform of the Shah Function



The Shah Function 
and a Pulse Train t
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where f(t) is the shape of each pulse and T is the time between pulses.
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An infinite train of 
identical pulses can 
be written:

The Fourier Transform of an Infinite Train of Pulses

E(t) =  III(t/T) * f(t) t
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The spacing between frequencies (modes) is then  T or  T.

The Convolution Theorem says that the Fourier Transform of a 
convolution is the product of the Fourier Transforms.  So the
spectrum of the infinite train of
pulses is given by:
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The Fourier Transform of a Finite Pulse Train
A finite train of identical pulses can be written:

[III(( ) ( () )/ ) ]t T g tE t f t 

where g(t) is a finite-width envelope over the pulse train.
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Use the fact 
that the Fourier 
transform of a 
product is a 
convolution…
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The spectrum of a short pulse

So where are 
the modes?

They are there.  They are just too close together 
to resolve with most spectrometers.
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A laser’s frequencies are called longitudinal modes.

They’re separated by 1/T = c/2L, where L is the length of the laser.

Which modes lase depends on the gain and loss profiles.

Frequency

In
te

ns
ity

Here, 
additional 
narrowband 
filtering has 
yielded a 
single 
mode.

Actual Laser Modes



But a light bulb is also broadband.

What exactly is required to make an ultrashort pulse?

Answer:     
BOTH a laser with a very broadband output (many modes), 
and a way to make all the modes have the same phase as 
each other.

Light bulbs, lasers, 
and ultrashort pulses
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Generating short pulses = Mode-locking
Locking vs. not locking the phases of the laser modes (frequencies)

Random 
phases

Light bulb

Intensity vs. time

Ultrashort 
pulse!

Locked 
phases

Time

Time

Intensity vs. time
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Mode-locked vs. non-mode-locked light

Mode-locked pulse train:

A train of 
short pulses
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Q: How many different modes can oscillate 
simultaneously in a 1.5 meter Ti:sapphire laser?

A: Gain bandwidth  = 200 nm     = (c/2)  ~ 1014 Hz
bandwidth/mode = 106 modes

That seems like a lot. Can this really happen?

Therefore mode spacing is  = c/Lrt  100 MHz

200 nm
bandwidth!

Wavelength (nm)

Ti:sapphire: how many modes lock?

Ti: sapphire crystal

pump

Typical cavity layout: 
length of path from 
M1 to M4 = 1.5 m



independent of 

We have seen that the gain is given by:
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losses Q: Suppose the gain is increased 
further.  Can it be increased so that the 

mode at q+1 oscillates in steady 
state?

A: In an ideal laser, NO!
At q, Gain = Loss!

Homogeneous gain medium

Suppose the gain is increased to a point where it 
equals the loss at a particular frequency, q
which is one of the cavity mode frequencies.



Suppose that the collection of 4-level systems do not all share the same 0

Consider a collection of sites, with fractional number between 0 and 0 + d0:
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The modified susceptibility is:

homogeneous “packets” 
(Lorentzian lines)

inhomogeneous line shape: this is g()

The “packets” are mutually independent 
- they can saturate independently!

Inhomogeneous gain medium



Lorentzian 
homogeneous 
line shape

Gaussian 
inhomogeneous 
distribution, of 
width    
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No closed-form solution to this integral
For strong inhomogeneous broadening (  ):

" = Gaussian, with width =  (NOT )
': no simple form, but it resembles h'

Examples:
Nd:YAG - weak inhomogeneity
Nd:glass - strong inhomogeneity
Ti:sapphire - absurdly strong inhomogeneity

Inhomogeneous broadening
Choosing a particular 
form for g(): a 
Gaussian distribution:



Q: Suppose the gain is increased above threshold in an 
inhomogeneously broadened laser.  Can it be increased 

so that the mode at q+1 oscillates in steady state?

New answer: Yes!  Each homogeneous packet saturates independently

There are ‘holes’ burned 
in the gain spectrum.

multiple cavity modes
oscillating simultaneously

a priori, these modes 
are completely 

independent, and need 
not have any particular 
phase relationship to 

one another

wq

laser gain 
profile

wq+1wq-1

losses

wq-2 wq+2 wq+3

Spectral hole burning


