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Ray Optics

We'll define "light rays" as directions in space, corresponding, roughly,
to k-vectors of light waves (but with direction only, no magnitude info).

axisinput

output

Each optical system will have an axis, and all light rays will be 
assumed to propagate at small angles to the axis.  This is called the 
Paraxial Approximation.



The Optic Axis

A mirror deflects the optic axis into a new direction with the 
angle of reflection equal to the angle of incidence.  

This ring laser has an optic axis that scans out a rectangle.

Optic axis A ray propagating 
through this system

We define all rays relative to the relevant optic axis.



Ray 
Vectors

At every position, z, along the optic axis, a light ray can be defined 
by two co-ordinates:

its position, x

its slope, 

Optic axis

x



These parameters define a ray vector,
which will change with distance, z, as 
the ray propagates through optics.

x
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Ray Matrices
An optical element’s effect on a ray is found by multiplying the ray 
vector by the element’s ray matrix.

Ray vector 
before lens

after lens before lens

after lens before lens
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Lens ↔ 2 x 2 ray matrix

For many optical components, 
we can define 2 x 2 ray matrices.

Distance ↔ 2 x 2 ray matrix

Ray matrix 
for lens

Ray vector 
after lens

xin , in

xout , out

We can do the 
same for the 
other lenses and 
the distances.



Ray Matrices 
as Derivatives

We can write 
these equations 
in matrix form.
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Since the displacements, xin and xout, 
and angles, in and out, are all 

assumed to be small, we can think in 
terms of partial derivatives. 



For cascaded elements, we simply multiply 
together all the individual ray matrices.
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Notice that the order looks opposite to what it should be, 
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Ray Matrix for Free Space or a Medium
If xin and in are the position and slope upon entering, let xout and out
be the position and slope after propagating an arbitrary distance, z.
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Rewriting these expressions 
in matrix notation:
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Small angle 
approximation: 
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Ray Matrix for 
an Interface

At the interface:

 out =   [n1 / n2]in
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out

n2

xin xout
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which, for small angles, becomes:   n1 in =  n2 out

Snell's Law says:    n1 sin(in) =  n2 sin(out)

Now calculate out:

xout = xin



Ray Matrix for a Curved Interface
At the interface, again:

xout = xin.  

n1 n2

xin

1
2

in

s

R

z

out

s

s = xin /R

1 = in+ xin / R     and    2 = out+ xin / R
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1 = in+ s and 2 = out+ s

To calculate out, we must 
calculate 1 and 2.

s is the surface slope at 
the height xin.



A thin lens is just two curved interfaces.
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We’ll neglect the glass in between (it’s a 
really thin lens!), and we’ll take n1 = 1.
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This can be written:

1 21/ ( 1)(1/ 1/ )f n R R   The Lens-Maker’s Formulawhere:

n1 = 1

R1 R2

n2 = n ≠ 1
n1 = 1



Ray Matrix for a Lens

The quantity, f, is the focal length of the lens. It’s the most important 
parameter of a lens. It can be positive or negative (but never zero!).
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If f  > 0, the lens deflects 
rays toward the axis. 

f > 0

If f  < 0, the lens deflects 
rays away from the axis.
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R1 > 0
R2 < 0 f < 0

R1 < 0
R2 > 0

It’s easy to extend the Lens Maker’s Formula to real lenses of 
greater thickness.

Sign convention:  
R > 0 if the sphere 
center is to the 
right (z > 0), and 
R < 0 if the sphere 
center is to the 
left (z < 0). 



Types of lenses
Lens nomenclature

Which type of lens to use (and how to orient it) depends on the 
application.



Ray Matrix for a Curved Mirror

Like a lens, a curved mirror will focus a beam. Its focal length is R/2.

Note that a flat mirror has R = ∞ and hence an identity ray matrix.
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Consider a mirror with radius of curvature, R, with its optic axis 
perpendicular to the mirror:
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And it maps input position 
to angle:

Lenses can simultan-
eously map angle to 
position and position 
to angle.

From input to output, use:
1) A distance f
2) A lens of focal length f
3) Another distance f
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So this arrangement maps 
input angle to position:

independent of 
input position

independent of 
input angle



A system images an object when B = 0.

When B = 0, all rays from a 
point xin arrive at a point xout, 
independent of angle.

xout = A xin When B = 0, A is the magnification.
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The Lens Law

From the object to the 
image, we have:

1) A distance do
2) A lens of focal length f
3) A distance di

1 1 1

o id d f
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This is the Lens Law.

which equals zero if:

Lens

ImageObject

do di

f



Imaging 
Magnification
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If the imaging condition,
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So:
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ImageObject

do di

f

Angular 
magnification

M magnification



If an optical system lacks cylindrical 
symmetry, we must analyze its x- and y-
directions separately:  cylindrical lenses.

A spherical lens focuses in both transverse directions.
A cylindrical lens focuses in only one transverse direction.

When using cylindrical lenses, we must perform two separate 
ray-matrix analyses, one for each transverse direction.



A failure of the ray optics approach

Thin lens, 
focal length f

Input beam 
(bundle of rays) Distance d = f

What happens in this 
plane (the focal 

plane)?

Key question: how 
big is the illumination 

spot?
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unique xin, but 
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(parallel rays)
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According to this analysis, the spot size in the focal plane is identically zero!
This would imply that the intensity is infinite at that point.
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In reality, the spot size of a focusing 
beam does not become zero in the 
focal plane.

The spot size gets smaller, then larger.  But never reaches zero.

If we want to compute the spot size, then we need something 
better than ray optics!



What if ray optics is not good enough?

Start with the wave equation:
2 2 2 2

2 2 2 2 2

E E E 1 E
x y z c t
   

  
   

Also, assume that the variation along the direction of 
propagation (z axis) is given by:  

ejkz × (a function of x, y and z which varies slowly with respect to z)

Assume a harmonic time dependence, of the form ejt.

(slowly varying with respect to both ejkz and also the transverse variation)

propagation direction (z axis)

E field amplitude changes along x, 
slowly compared to the wavelength

E field envelope changes along z, 
slowly compared to the wavelength



optic axis



These assumptions imply:   E(x,y,z,t) = u(x,y,z) ꞏ ejt  jkz

and:  
2 2 2

2 2 2, ,  and                
 

   
u u u uk k c

z x y z


Now, plug this form for E(x,y,z,t) into the wave equation.

(Note: this is, essentially, the paraxial approximation)

propagation direction (z axis)

E field amplitude changes along x, 
slowly compared to the wavelength

E field envelope changes along z, 
slowly compared to the wavelength



optic axis

What if ray optics is not good enough?



Paraxial wave equation
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x, y, and t derivatives are easy: z derivative:
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The wave equation 
becomes:

2 2 2
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paraxial approximation
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This is known as the 
“paraxial wave equation”

E(x,y,z,t) = u(x,y,z) ꞏ ejt - jkz



The most useful solution to the 
paraxial wave equation

The solution we care about is an electric field whose amplitude and phase 
both vary quadratically with the transverse coordinates x and y – that is, 
like a Gaussian function:

  2 2 2 2

2

exp ( )
( , , ) exp

( ) ( ) 2 ( )
ikz i z x y x yE x y z ik
w z w z R z
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w(z) is the spot size at distance z
R(z) is the beam radius of curvature at distance z, and
(z) is a distance-dependent phase shift.

Note that the spot size of this beam never reaches zero unless w(z) goes 
to zero at some value of z (which it never does).

This solution to the paraxial wave equation is a nearly perfect description 
of the beam produced by most lasers.



Real laser beams always have a finite spot size. Even if you focus the 
beam, the minimum size is never zero.

Laser beams are Gaussian beams, not rays.

At any value of z, the intensity vs. x (or y) is a Gaussian function, with 
a half-width of w. This width varies with z, as shown above.

The beam has a waist (minimum radius) at the focal point (z = 0, in the 
above diagram) where the spot size is w0.  It then expands to w = w(z)
at a distance z away from the focus.

The wave front radius of curvature, R(z), also changes with distance.

x

Collimated region

R(z) = wave-front radius 
of curvature

w(z)

z

Beam radius w(z)

z = 0



x axis

on this circle, 
I = constant

Its width is determined by
the value of w.

y 
ax

is

The spot is a 2D Gaussian:

Gaussian beam spot
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The magnitude of the electric field is therefore given by:

with the corresponding 
intensity profile:
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zw0

w(z)

R(z)zR

Gaussian Beam Spot, 
Radius, and Phase 
dependence on z
The dependence of the spot size, 
radius of curvature, and phase shift 
on propagation distance z:

 
   

2
0

2

( ) 1 /

/

( ) arctan( / )

R

R

R

w z w z z

R z z z z

z z z

 

 



2
0 /Rz w 

where zR is the Rayleigh range, and is given by:

Also assuming that 
the beam is 
propagating in empty 
space and not 
encountering any 
lenses or other 
optical components

These expressions 
assume that the 
minimum spot size 
(focal point) is 
located at z = 0.



Variation of R(z) and w(z) with distance

Red curve:
R(z)/zR
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Blue curve:
w(z)/w0
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Note #2: positive values of R
correspond to a diverging beam, 
whereas R < 0 would indicate a 
converging beam.

Note #1: for distances larger 
than a few times zR, both the 
radius and waist increase linearly
with increasing distance. This is 
also what ray optics (white 
dashed line) would predict.

When propagating away 
from a focal point at z = 0:

focal point 
at z = 0



Collimation             Collimation
Waist spot            Distance                 Distance

size w0  = 10.6 µm           = 0.633 µm
_____________________________________________

.225 cm 0.003 km 0.045 km 
2.25 cm 0.3 km 5 km
22.5 cm 30 km 500 km
____________________________________________

Longer 
wavelengths and 
smaller waists 
expand faster 
than shorter 
ones.

w0

2
0 /Rz w 

Tightly focused laser beams expand quickly.  
Weakly focused beams expand less quickly, but still expand.
As a result, it's very difficult to shoot down a missile with a laser.

Twice the Rayleigh range is the 
distance over which the beam 
remains about the same size, that 
is, remains collimated.

Gaussian Beam Collimation



Aperture transmission
The irradiance of a Gaussian beam drops dramatically 
as one moves away from the optic axis.  How large must 
a circular aperture be so that it does not significantly 
truncate a Gaussian beam?

Before aperture After aperture

Before the aperture, the radial variation of the irradiance 
of a beam with waist w is:
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where P is the total power in the beam:   2
, P u x y dxdy



Aperture transmission
If this beam (waist w) passes through a circular aperture 
with radius A (and is centered on the aperture), then:

fractional power transmitted 
2 2

2 2
2 2
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Focusing a Gaussian beam
The focusing of a Gaussian beam can be regarded as the reverse of 
the propagation problem we did before.

d0

D
A Gaussian beam focused by 
a thin lens of diameter D to a 
spot of diameter d0.

How big is the focal spot?

Well, of course this depends on how we define the size of the focal spot.  If 
we define it as the circle which contains 86% of the energy, then d0 = 2w0.

Then, if we assume that the input beam completely fills the 
lens (so that its diameter is D), we find:

 0
2 2 #fd f

D
 

 

where f# = f/D is the f-number of the lens.

It is very difficult to construct an optical system with f# < 0.5, so d0 > .


