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Gaussian Beam Spot, 
Radius, and Phase

The expressions for the spot size, 
radius of curvature, and phase shift:
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where zR is the Rayleigh range, and is given by:

One Rayleigh range away 
from the focal plane, the area 
of the beam spot is double the 
area at the focal point.



w(z)
Gaussian beam 
divergence
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The smaller the waist and the larger the wavelength, the larger 
the divergence angle.

Far away from the waist, the 
spot size of a Gaussian beam 
will be:
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The beam 1/e divergence half angle is then w(z) / z as z :



The Gaussian-beam complex-q parameter
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We can combine these two factors (they’re both Gaussians):

where:
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  q completely determines
the Gaussian beam.
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Collimated region

R(z) = wave-front radius 
of curvature

w(z)

z

Beam radius w(z)
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The complex-q parameter at a focal point

At a focal point (z = 0), these 
become:
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The q parameter is pure imaginary at a focal point, 
where the wave front is planar.
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Thus at a focal point (z = 0), 
the q parameter is:
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Ray matrices and the propagation of q
We’d like to be able to follow Gaussian beams through optical systems.
Remarkably, ray matrices can be used to propagate the q-parameter.

Optical system

A B
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C D
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qout 
Aqin  B
Cqin  D

This relation
holds for all
systems for 
which ray 
matrices hold:

Just multiply all 
the matrices first 
and use this result 
to obtain qout for 
the relevant qin!



Propagating q: an example

Free-space propagation through a distance z:
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Then: q(z) 
1q(0)  z
0 q(0) 1

 q(0)  z

qout 
Aqin  B
Cqin  D

The ray matrix for free-space propagation is:



Propagating q: an example (cont’d)
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Propagating q: 
another example
Focusing a collimated beam (i.e., a 
lens, f, followed by a distance, f ):

A collimated beam has a big spot size (winput) and Rayleigh range (zR
input), 

and an infinite radius of curvature (R), so: qin =  i zR
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Propagating q: 
another example 2winput 2wfocus

f
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The well-known result 
for the focusing
of a Gaussian beam
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By comparing these two expressions, we find:
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Remember these three criteria?
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1. The amplitude must reproduce itself after 
each round trip.  Gain = Loss.

Consequence: lasers have a threshold.

2. The phase must reproduce itself after 
each round trip.  

Consequence: lasers have longitudinal 
modes: specific frequencies of operation.

0

laser gain 
profile

longitudinal 
modes

frequency

3. The transverse distribution of intensity must reproduce itself    
after each round trip.  

Consequence: lasers have spatial modes: Gaussian beams! The 
details of the spatial mode are determined by the laser resonator.



Laser resonators

The resonator is the mirrors (plus all other optical components) 
that act to confine the EM wave.

A laser resonator with 
flat parallel mirrors

A careful analysis of the resonator will be important in understanding 
the behavior of lasers, particularly their transverse intensity patterns.

Empty cavity analysis: we assume that there is no gain medium or 
optics inside the laser.

This allows us to consider the resonator as a separate problem from 
the consideration of the laser medium.



Within the ray matrix formalism, we can define the stability of a 
laser resonator in a simple and intuitive way.

Stability of a resonator

A stable resonator An unstable resonator

Consider a paraxial ray propagating inside the resonator.

If the ray escapes in a finite number of bounces, 
then the resonator is unstable.

If the ray is still trapped after an infinite number of 
bounces, then the resonator is stable.



Stability of a resonator - ray matrix analysis
Let’s consider a general two-mirror cavity:
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Ray matrix: many bounces

After N round trips, the output ray is related to the initial ray by:
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If we define a new variable, , such that:
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Ray matrix: stability criterion

We note that the output ray position xout remains finite 
when N goes to infinity, as long as  is a real number.
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As N → ∞, one of these exponential terms grows to infinity.

Thus, the condition for resonator stability is  = real, or cos 1
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g parameters of the resonator
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We define the “g parameters” of the resonator:

Then, the stability requirement is: 1 20 1 g g

g1

g2

g1g2=1

g1g2=1

g1g2=0Shaded regions show 
the stable solutions



Resonator analysis: Gaussian beams
Consider a Gaussian beam, focusing in empty space, 
with a certain waist size and location:

Suppose we fit a pair of curved mirrors  to this beam at any two points.  
The radii of the mirrors should exactly match the wavefront curvature 
of the Gaussian beam at each mirror location. 

Each mirror will reflect the Gaussian beam exactly back on 
itself, with exactly reversed wavefront curvature and 
direction.

IF the mirrors are large enough so that not much of the 
beam misses the mirrors, then:

stable mode of the cavity



Resonator analysis: Gaussian beams
More realistically, one would be given (or build) a resonator, and then 
need to determine the Gaussian beam solutions that it supports.

We assume that L, R1 and R2 are known. But, the spot size 
w0 and the position of the waist relative to the mirrors (i.e., 
the values of z1 and z2) are unknown.

We use Gaussian beam analysis to determine these values.

To analyze this situation, we can use the model shown here:

z = 0

waist

w0

z = z1 z = z2

radius of 
curvature R1

radius of 
curvature R2

length L



Gaussian beam analysis of a resonator
Reminder: The radius of curvature of the wave front of a 
Gaussian beam at a distance z away from its waist is given by:
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So, we have three equations:
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in three unknowns: z1, z2, and zR.  This can be solved.

Notes on sign conventions:
 The Gaussian wave front curvature R(z) is negative for a converging beam going to the right.
 Mirror curvatures R1 and R2 are positive for mirrors that are concave inwards (as seen looking 
from within the resonator).
 The distance z1 is negative if mirror #1 is located to the left of the beam waist (so that the 
waist is inside the resonator).
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Gaussian mode parameters in a resonator
The solutions can be written in terms of 
the same two g parameters defined earlier:
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From these, we can determine the beam waist at z = 0 
(the smallest beam spot inside the resonator):
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as well as the spot sizes at the locations of the mirrors:
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These two values tell us how big the mirrors have to be.
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Stability of a Gaussian mode
Notice that the value of zR is a real number if and only if: 1 20 1 g g

This is the same criterion found earlier using ray optics!

g1

g2

g1g2=1

g1g2=1
confocal

concentric

planar

symmetric: R1 = R2  An infinite number of possible solutions
 Unstable solutions are employed, although 
fairly rarely (most lasers are stable)
 Certain ones are particularly interesting

This is also true for the beam waists.
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(Nearly) planar resonator
g1 = g2  1, and R1 = R2 >> L

 Large mode size
 Beam waist is nearly constant inside the cavity
 For g1 = g2 = 1, waist becomes infinite: Gaussian model fails
 Very sensitive to small misalignment of the cavity, so it is very 
rarely used in lasers where the cavity length is more than 1 cm or so
 But it is common in small lasers where it is easy to ensure mirror 
parallelism: e.g., semiconductor diode lasers
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g1

g2

g1g2=1

g1g2=1concentric

Symmetric concentric resonator
g1 = g2  1, and R1 = R2 = L/2

L = 2R

 Small mode size in the center of the cavity
 For g1 = g2 = 1, waist becomes exactly zero: Gaussian model fails

 Very sensitive to small misalignment of the cavity, so very rarely used

In the case of an approximately concentric resonator, R1 = R2 = L/2 + L
we find that the beam waists are given by:
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for L << L



g1

g2

g1g2=1

g1g2=1

Symmetric confocal resonator

confocal

g1 = g2 = 0, and therefore R1 = R2 = L

waist

 Smallest average spot size 
of any resonator
 Mirror spacing = 2zR
 Very insensitive to small 
misalignment of the cavity
 a commonly used design
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g1

g2

g1g2=1

g1g2=1

Hemispherical resonator
One possible 
hemispherical 
resonator point

g1 = 1 and g2 = 0, and 
therefore R1 =  and R2  L

waist

This is essentially just half of 
the symmetric confocal case. 

 Small spot on the flat mirror, 
larger spot on the curved mirror
 Very insensitive to small 
misalignment of the cavity
 Very commonly used design

In the case of an approximately hemispherical radiator, R2 = L + L
we find that the beam waists are given by:
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Hemispherical resonator

A simple hemispherical resonator and the 
electric field distribution of its Gaussian mode. 
The wave fronts must be planar on the flat left 
end mirror, and the beam radius on the left 
mirror is so that the wave fronts also match the 
curvature of the right mirror.

Same as above, but with a stronger curvature 
of the right mirror. The mode field adjusts 
accordingly.



g1

g2

g1g2=1

g1g2=1
One possible 
convex-
concave point

Convex-concave resonator
Example:
g1 = 2 and g2 = 1/3, and 

therefore R1 = L and R2  = 1.5L

 The beam waist is outside 
of the laser cavity, so the 
beam never actually gets 
there.
 Common design for high-
power lasers where small 
spots could damage mirrors.

R2  = 1.5LR1 = L

This is where the waist would be, if the 
beam leaked through the convex mirror.



Unstable resonators
It is also possible for lasers to operate with an unstable resonator.

unstable resonator – the beam does not reproduce itself 
on each round trip.

- Gaussian beam analysis is usually not useful, 
because the beam is usually not a Gaussian.

 The beam size is large, so 
one can use a wide gain 
medium.
 Gain per round trip must 
be very high.
 In this example, the output 
beam has a doughnut shape 
– dark in the middle 
(definitely NOT a Gaussian!)



In many cases, real lasers are actually as 
simple as the ones we’ve looked at.

For example: in many gas lasers, there are only two mirrors, and the gain 
medium doesn’t actually affect the shape of the beam much because it is 
gaseous.

HeNe lasers most often use symmetric confocal or hemispherical cavities.



In other cases, they can be complicated
It is not unusual to use more than two mirrors.  Also, there’s usually 
something inside the laser (i.e., the gain medium) that cannot be ignored.

Gaussian beam analysis is the first go-to method, even in 
complicated laser cavities.

This shows screen shots of a Ti:sapphire laser, from a Gaussian 
beam resonator analysis software package called JLaserLab.


