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Pulses can be complicated
These two pulses have the same spectra.  
But they are obviously not the same.

In optics, measuring the spectrum of a light source is easy. 
But that doesn’t distinguish between these two pulses.

In ultrafast optics, measuring these sorts of properties of your 
laser pulse is often very important, and also very challenging.

Today, we will lay the groundwork for how to understand 
these pulse distortions.



The duration of a short pulse
One of the two most important 
parameters to describe an 
ultrashort pulse is its duration.

(The other is its central frequency 
or wavelength.)

You can tell its important because it is 
the thing that everybody makes plots of.

But how do we define it?



The pulse length
There are many definitions of the 
width or length of a wave or pulse.

The effective width is the width of a rectangle whose height and 
area are the same as those of the pulse.

Effective width ≡ Area / height:

Advantage:  It’s easy to understand.
Disadvantages:  The Abs value is inconvenient.

We must integrate to ± ∞.
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The rms pulse width

The root-mean-squared width or 
rms width:

Advantages: Integrals are often easy to do analytically.
Disadvantages:  It weights wings even more heavily,
so it’s difficult to use for experiments, which can't scan to ± .
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The rms width is the normalized second-order moment.



The Full-Width-
Half-Maximum

Full-width-half-maximum
is the distance between the 
half-maximum points.

Advantages:  Experimentally easy.
Disadvantages:  It ignores satellite 
pulses with heights < 49.99% of the 
peak!

Note:  we can define these widths in terms of E(t) or of its intensity, |E(t)|2.
Define spectral widths () similarly in the frequency domain (t).
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The Uncertainty Principle
The Uncertainty Principle says that the product of a function's widths
in the time domain (t) and the frequency domain () has a minimum.
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Combining results:

or:

Use effective widths 
assuming f(t) and 
F() peak at 0:
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Other width definitions yield 
slightly different numbers.



For a given wave, the product of the time-domain width (t) and 
the frequency-domain width () is the 

Time-Bandwidth Product (TBP)

 t  TBP

A pulse's TBP will always be greater than the theoretical minimum
given by the Uncertainty Principle (for the appropriate width definition).  

The TBP is a measure of how complex a wave or pulse is.

The Time-Bandwidth Product

Even though every pulse's time-domain and frequency-domain 
functions are related by the Fourier Transform, a wave whose TBP is
the theoretical minimum is called "Fourier-Transform Limited."

sometimes people use 
 instead of .



The coherence time (c = 1/)
indicates the smallest temporal 
structure of the pulse.

In terms of the coherence time:

TBP =   t =  t / c

=  about how many spikes are in the pulse

But TBP is just one number.  To accurately describe a real pulse, we 
require a more detailed analysis which accounts for both the time-
varying intensity and the time-varying phase.

The Time-Bandwidth Product is a 
measure of the pulse complexity.
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An ultrashort laser 
pulse has an intensity 
and phase vs. time.
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Neglecting the spatial dependence for 
now, the pulse electric field is given by:

Intensity PhaseCarrier
frequency

A sharply peaked function for the intensity yields an ultrashort pulse.
The phase tells us the frequency evolution of the pulse in time.
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The real and complex 
pulse amplitudes
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Removing the 1/2, the c.c., and the 
exponential factor with the carrier 
frequency yields the complex 
amplitude, E(t), of the pulse:

This removes the rapidly varying part of the pulse electric field and 
yields a complex quantity, which is easier to calculate with.

( )I t is often called the real amplitude, A(t), of the pulse.
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The Gaussian pulse

where HW@1/e is the field half-width at 1/e of its maximum, 
and FWHM is the intensity full-width-half-maximum.

The intensity is:
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For many calculations, a nice first approximation for an 
ultrashort pulse is a zero-phase Gaussian pulse.
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Intensity vs. amplitude

The intensity of a Gaussian pulse is √2 shorter than its real amplitude. 
This factor of √2 is different for other pulse shapes.

The phase 
of this pulse 
is constant, 
(t) = 0, 
and is not 
plotted 
here.



It’s easy to go back and forth between the electric field and the 
intensity and phase:

The intensity:

Calculating the intensity and the phase
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To save effort, we’ll stop writing 
“proportional to” in these expressions 
and take E, X, I, and S to be the 
field, intensity, and spectrum 
dimensionless shapes vs. time.



The Fourier Transform

To think about ultrashort laser pulses, the Fourier Transform 
is essential.
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We always perform Fourier transforms on the real or complex pulse 
electric field, and not on the intensity (unless otherwise specified).



The frequency-domain electric field
The frequency-domain equivalents of the intensity and phase
are the spectrum and spectral phase.
Fourier-transforming the pulse electric field:
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The frequency-domain electric field has both positive- and negative-
frequency components. (Recall that the Fourier transform of cos(t) 
is the sum of two delta functions at frequencies  and –.)

Note that  and  are different!



The complex frequency-domain pulse 
field
Since the negative-frequency component contains the same 
information as the positive-frequency component, we usually 
neglect it. 

We also center the pulse on its actual frequency, not zero. 

So the most commonly used expression for the complex 
frequency-domain pulse field is:

Thus, the frequency-domain electric field also has an intensity and 
phase.
S is the spectrum, and  is the spectral phase.
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The spectrum with and without the 
carrier frequency

Fourier transforming X (t) and E(t) yields different functions.

We usually use just 
this component.
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The spectrum and spectral phase

The spectrum and spectral phase are obtained from the 
frequency-domain field the same way the intensity and phase
are from the time-domain electric field.
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Intensity and phase of a Gaussian
The Gaussian is real, so its phase is zero.

Time domain:

Frequency domain:

So the spectral phase 
is zero, too.

A Gaussian 
transforms

to a Gaussian

Intensity and Phase

Spectrum and Spectral Phase



The spectral phase of a time-shifted pulse

 ( ) exp( ) ( )f t a i a F   YRecall the Shift Theorem:

So a time-shift 
simply adds some 
linear spectral 
phase to the 
pulse!

Time-shifted 
Gaussian pulse 
(with a flat phase):

Intensity and Phase

Spectrum and Spectral Phase



What is the spectral phase?
The spectral phase is the phase of each frequency in the wave-form.

t0

All of these 
frequencies have 
zero phase. So 
this pulse has:

() = 0
Note that this 
wave-form sees 
constructive 
interference, and 
hence peaks, at 
t = 0.

And it has 
cancellation 
everywhere else.
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Now try a linear spectral phase: () = a.
By the Shift Theorem, a linear spectral phase is just a delay in time. 

And this cartoon shows why that occurs!

t

(1) = 0

(2) = 0.2 

(3) = 0.4 

(4) = 0.6 

(5) = 0.8 

(6) = 



To transform the spectrum, note that the energy is the same, whether 
we integrate the spectrum over frequency or wavelength:

Transforming between wavelength and 
frequency
The spectrum and spectral phase vs. frequency aren’t the 
same as the spectrum and spectral phase vs. wavelength.
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The spectrum and spectral phase vs. 
wavelength and frequency
Example:  A Gaussian spectrum with a linear spectral phase vs. 
frequency

vs. Frequency vs. Wavelength

Note the different shapes of the spectrum and spectral phase
when plotted vs. wavelength and frequency.



Bandwidth in various units
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In frequency, by the Uncertainty Principle, a 1-ps pulse has bandwidth: 

 =  ~1/2 THz
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So  (1/) = (0.5 × 1012 /s) / (3 × 1010 cm/s) or:   (1/) = 17 cm-1

In wavelength:
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wavelength:
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or:   = 1 nm

In wave numbers (cm-1), we can write:



The temporal phase, (t), contains frequency-vs.-time information.

The pulse instantaneous angular frequency, inst(t), is defined as:

The Instantaneous frequency
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This is easy to see.  At some time, t, consider the total phase of the 
wave. Call this quantity 0:

Exactly one period, T, later, the total phase will (by definition) increase 
to 0 + 2:

where (t+T) is the slowly varying phase at the time, t+T. Subtracting 
these two equations:



Dividing by T and recognizing that 2π/T is a frequency, call it inst(t):

inst(t) = 2π/T = 0 – [(t+T) – (t)] / T

But T is small, so [(t+T) – (t)] /T is the derivative, d /dt.

So we’re done!

Usually, however, we’ll think in terms of the instantaneous 
frequency, inst(t), so we’ll need to divide by 2:

inst(t) = 0 – (d/dt) / 2

While the instantaneous frequency isn’t always a rigorous quantity, 
it’s fine for ultrashort pulses, which have broad bandwidths.

Instantaneous frequency (cont’d)



Phase wrapping and unwrapping
Technically, the phase ranges from – to . But it often helps to 
“unwrap” it. This involves adding or subtracting 2 whenever there’s 
a 2 phase jump.

Example: a pulse with quadratic phase

Wrapped phase Unwrapped phase

The main reason for unwrapping the phase is aesthetics.

Note the scale!



Phase-blanking
When the intensity is zero, the phase is 
meaningless. 
When the intensity is nearly zero, the 
phase is nearly meaningless.
Phase-blanking involves simply not plotting 
the phase when the intensity is close to zero.

The only problem with phase-blanking is that you have to decide the 
intensity level below which the phase is meaningless.

(i)

Re

Im
E(i)

Without phase blanking

Time or Frequency

With phase blanking

Time or Frequency



Phase Taylor Series expansions
We can write a Taylor series for the phase, (t), about the time t = 0:

where

where only the first few terms are typically required to describe well-
behaved pulses. Of course, sometimes you have to consider badly 
behaved pulses, which have higher-order terms in (t).

Expanding the phase in time is not common because it’s hard to 
measure the intensity vs. time.
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Frequency-domain phase expansion
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It’s much more common to write a Taylor series for ():

As in the time domain, only the first few terms are typically required to 
describe well-behaved pulses. 
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is called the group delay.
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 is called the group-delay dispersion.

0 is called the absolute phase


