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Reminder: what is dispersion

“normal dispersion” : 0dn
d


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The word “dispersion” refers to the 
frequency-dependence of the 
refractive index of a medium.

The refractive index of most materials 
varies with  in some nonlinear way.

It has frequency (or wavelength) derivatives 
that are all generally non-zero.
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Dispersion in Optics
The dependence of the refractive index on wavelength has two 
effects on a pulse, one in space and the other in time.

Group delay 
dispersion (or 
Chirp)
d2n/d2

Angular dispersion
dn/d

Both of these effects play major roles in ultrafast optics.

Dispersion also can disperse a pulse in time:

Dispersion can disperse a pulse in space (angle):

vgr(blue) < vgr(red)

out(blue) > out(red)



When two functions of different 
frequency interfere, the result is beats.
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Suppose that 1 and 2 are large, 
and not too different from each 
other (e.g., two different visible 
frequencies)
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Adding oscillations of two different frequencies yields the product of 
a rapidly varying cosine (ave) and a slowly varying cosine ().
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When two functions of different 
frequency interfere, the result is beats.

Individual
waves

Sum

Envelope

Intensity

time
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When two waves of different frequency 
interfere, they also produce beats.
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Let and

Similiarly, and

Same assumption about 
1 and 2, and similarly 
for k1 and k2
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Traveling-Wave Beats
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waves
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time

In phase Out of phase

Seeing Beats
It’s usually impossible to see optical beats because they occur on a time 

scale that’s too fast to detect. This is why we say that light waves of 
different colors don’t interfere, and we only see the average intensity.

However, a sum of many frequencies will 
yield a train of well-separated pulses:
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max Pulse separation: min
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Group Velocity and phase velocity

vg  d /dk

What about the other velocity—the velocity of the pulse amplitude?

Define the group velocity: vg   /k

Taking the continuous limit, 
we define the group velocity as:

carrier wave

amplitude

Light-wave beats (continued):

X tot(z,t) = 2E0 cos(kavez–avet) Pulse(kz–t)

This is a rapidly oscillating wave: [cos(kavez–avet)] 

with a slowly varying amplitude: [2E0 Pulse(kz–t)]

The phase velocity comes from the rapidly varying part:  v  = ave / kave



Group velocity is not equal to phase velocity
if the medium is dispersive (i.e., if n varies).
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where k1 and k2 are the k-vector magnitudes in vacuum, and where 
n1 and n2 are the refractive indices of the medium in which the wave 
is propagating, at frequencies 1 and 2: n(1) = n1 and n(2) = n2.



Phase and Group Velocities

Unrealistic Unrealistic

In vacuum

Common 
case for 
most 
materials

Unrealistic

Possible



Calculating the group velocity

  1v /g dk d 

Using k  =   n() / c0, calculate:  dk /d = (n +  dn/d) / c0

vg c0 n  dn/d) =  (c0 /n) / (1 +  /n dn/d )

Finally:

So the group velocity equals the phase velocity only when dn/d = 0, 
such as in vacuum.  But for most materials, n usually varies with .
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vg  d /dk

Now,  is the same in or out of the medium, but k = k0 n, where k0 is 
the k-vector in vacuum, and n depends on the medium.  
So it's easier to think of  as the independent variable:



Usually group velocity < phase velocity.

Except in regions of anomalous dispersion (near a resonance, where 
absorption is often large), dn/d is positive.  

So vg < v for most frequencies! 

: dn/d < 0
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Use the chain rule : 

Now, , so :      

Recalling that :     

we have:             
2
0

0 0 02
dn

n d c


  
             

or :

Calculating group velocity vs. wavelength
We more often think of the refractive index in terms of wavelength,
so let's write the group velocity in terms of the vacuum wavelength 0.
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Recall that the effect of a linear passive 
optical device (i.e., windows, filters, etc.) on 
a pulse is to multiply the frequency-domain 
field by a transfer function:

˜ E out()  H () ˜ E in ()

where H() is the transfer function 
of the device/medium:

( ) exp[ ( ) / 2] exp[ ( )]HH L i      

Spectral Phase and Optical Devices

H()
 ̃E in()  ̃E out()

Optical device
or medium

for a material with 
absorption coefficient ()

out ( )  H ()  in ( ) We simply add 
spectral phases.

Note that we CANNOT add the temporal phases!

out (t)  H (t)  in (t)

Since we also write E() = √S() exp[-i()], the spectral phase of the 
output light will be:

~



The Group-Velocity Dispersion (GVD)

To account for dispersion, expand the phase in a Taylor series:
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is the group velocity dispersion.
1( )
vg

dk
d



 

   
  

The third one in particular: the variation in group velocity with frequency
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The phase due to a medium is: () =  n() k0 L = k() L
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The first few terms are all related to important quantities.



The effect of group velocity dispersion
GVD means that the group velocity will be different for different 
wavelengths in the pulse.

vgr(blue) < vgr(red)

Because ultrashort pulses have such large bandwidths, GVD is a 
bigger issue here than it is for cw light.



Calculation of the GVD (in terms of wavelength)

Recall that:
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Okay, the GVD is:
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Simplifying:
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(s/m)/Hz or 
s/Hz/m



GVD in optical fibers 

Sophisticated fiber structures, i.e., index profiles, have been designed 
and optimized to produce a waveguide dispersion that modifies the 
bulk material dispersion

Note that fiber 
folks define their 
“dispersion 
parameter” as 
proportional to 
the negative of 
the definition of 
GVD that we’ve 
been using.
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GVD yields group delay dispersion (GDD).
The delay is just the medium length L divided by the velocity.

The phase delay:
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The group delay dispersion (GDD):
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so:

Units: fs2 or fs/Hz 

GDD = GVD×L



Dispersion parameters for various materials



Manipulating the phase of light
Recall that we expand the spectral phase of the pulse in a Taylor Series:

2
0 1 0 2 0( ) [ ] [ ] / 2! ...             

So, to manipulate light, we must add or subtract spectral-phase terms.

2
0 1 0 2 0( ) [ ] [ ] / 2! ...H H H H             

and we do the same for the spectral phase of the optical medium, H:

For example, to eliminate the linear chirp (second-order spectral phase), 
we must design an optical device whose second-order spectral phase 
cancels that of the pulse:

2  H 2  0 d2
d 2

 0


d2 H

d 2
 0

 0i.e.,

group delay group delay dispersion (GDD)phase



Propagation of the pulse manipulates it.
Dispersive pulse 
broadening 
is unavoidable.

If 2 is the pulse 2nd-order spectral phase on entering a medium, and 
k”L is the 2nd-order spectral phase of the medium, then the resulting 
pulse 2nd-order phase will be the sum: 2 + k”L.

A linearly chirped input pulse has 2nd-order phase: 2, 2 2

/ 2
in


 




(This result 
pulls out the 
½ in the 
Taylor 
Series.) 

This result, with 
the spectrum, 
can be inverse 
Fourier-
transformed to 
yield the pulse.

Let’s do that!
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Since GDD is generally positive (for transparent materials 
in the visible and near-IR), a positively chirped pulse will 
broaden further; a negatively chirped pulse will shorten. 

Emerging from a medium, its 2nd-order phase will be:



Posing the problem

Suppose we have a short 
pulse, with (initially) zero 
chirp.

n

It traverses 
through a block 

of something 
transparent (with 

known n, and 
assume ).

What does it 
look like when 
it emerges?

?
To analyze:

start with Ein(t) (known)

convert to Ein()
propagate forward 
in the frequency 
domain: Eout()

back to time domain: Eout(t)

(ignore absorption)



 2
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As usual, neglecting the negative-
frequency term due to the c.c.Fourier-Transforming yields:

Start with temporal amplitude of the form:

i.e., an unchirped Gaussian pulse with center frequency 0, and duration
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1 1( ) exp     where    
4 2 ln 2

FWHM
G GE E t t       

   


Let’s write this as:

Propagation of a Gaussian pulse



This is still a quadratic in 
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Taylor expansion of k() at 0: (keeping only terms up to order 2)
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Time-domain field at z is found via inverse Fourier transform:
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Propagation of a Gaussian pulse



generally positive
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Propagation of a Gaussian pulse
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Propagation of a Gaussian pulse
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We can define a retarded time coordinate tR which moves along the z axis at 
the speed of the pulse envelope:
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We can also define a scaled GVD parameter,              , which has units of (length)-1. 2

2 "
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k
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Then, the propagation-distance-dependent pulse duration becomes: 

  1G Gt z t i z  

Note that this (complex) quantity appears in two places: the width of 
the Gaussian envelope (complex width = chirp!) AND the prefactor in 
front of the expression (peak intensity goes down as width increases)



This looks just like our expression for a linearly chirped 
pulse from last lecture, with ( – i) replaced by (– iz)

Because of this, the pulse width increases 
with increasing z, regardless of the sign of 

This term looks like a Gaussian with a 
complex width parameter!  Sound familiar?

Propagation of a Gaussian pulse
Plugging these into the expression:
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Let’s define a 
dimensionless 
linear chirp 
parameter  = z



Gaussian part of the exponential:
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t - z/Vg

SF6 glass
n = 1.78
n' = 2×10 psec
n" = 8×10 psec2z = 0 m

 = 0.441

Group velocity dispersion (GVD)



z = 100 m

 = 0.474

Gaussian part of the exponential:
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t - z/Vg

SF6 glass
n = 1.78
n' = 2×10 psec
n" = 8×10 psec2

Group velocity dispersion (GVD)



z = 200 m

 = 0.561

Gaussian part of the exponential:
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SF6 glass
n = 1.78
n' = 2×10 psec
n" = 8×10 psec2

Group velocity dispersion (GVD)



z = 300 m

 = 0.682

Gaussian part of the exponential:
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t - z/Vg

SF6 glass
n = 1.78
n' = 2×10 psec
n" = 8×10 psec2

Group velocity dispersion (GVD)



z = 400 m

 = 0.821

Gaussian part of the exponential:
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t - z/Vg

SF6 glass
n = 1.78
n' = 2×10 psec
n" = 8×10 psec2

Group velocity dispersion (GVD)



z = 500 m

 = 0.972

Gaussian part of the exponential:
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t - z/Vg

SF6 glass
n = 1.78
n' = 2×10 psec
n" = 8×10 psec2

Group velocity dispersion (GVD)



2
"2

Gt
k

 units of (length)-1 pulse width doubles after 
propagation through a 

length 3/

• group velocity dispersion k" distorts pulses
• typical materials have k" > 0, which induces an up chirp
• initially shorter pulses distort much more readily (larger bandwidth)

z = 0 z = 100 m

Group velocity dispersion (GVD)



Is it reasonable to neglect absorption?

Dispersion vs. absorption

Fractional change in pulse energy:
( ) 1
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Fractional change in pulse duration:
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Example: 
Typical fiber optics have:  ~ 0.11 / km ( = 1 dB/km)

and: k" ~ 21 psec2 / km at  = 1 m

Thus, in 10 m of fiber, a 100 fsec pulse experiences:
0.2% absorption loss
& pulse width broadening by a factor of ~900!

In the non-resonant regime: Dispersion is Everything

If we include absorption, then k has an imaginary part:   Im(k) = 
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sapphire, L ~ 1 cm

At  = 800 nm:
chirp parameter  2L

= 3.2×10-7

(per round trip)

It is small, but not zero!

Dispersion in a laser cavity
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Material: Al2O3
Pulse width: tG = 100 fsec



So how can we generate negative GDD?

This is a big issue because pulses spread further and further 
as they propagate through materials.

We need a way of generating negative GDD to compensate.

Negative GDD 
Device


