Abstract—We propose and simulate a new device combining a tunneling field-effect transistor (TFET) with a heterojunction bipolar transistor (HBT). The carriers generated in the tunneling junction are used as base current to drive the HBT and obtain a high bipolar current. Owing to the sharp switching of the TFET and high HBT current gain, the CMOS-compatible Si/Si$_{1-x}$Ge$_x$ device shows a subthreshold swing of μV/dec over seven decades of current, a high ON current, and scaling capability down to 10 nm.

Index Terms—Bipolar-enhanced tunneling field-effect transistor (TFET) (BET-FET), FET, heterojunction bipolar transistor (HBT), sharp switch, tunneling.

I. INTRODUCTION

The tunneling field-effect transistor (FET) (TFET) utilizing band-to-band tunneling (BTBT) has been proposed to tackle the limitations of conventional metal–oxide–semiconductor FETs (MOSFETs) and achieve subthreshold to subthreshold swing over a restricted current range, although materials with low bandgap have been used [2], [4]–[8].

The heterojunction bipolar transistor (HBT) has been widely used as a high-frequency current amplifier [9]. A multi-emitter HBT with an Esaki tunnel diode supplying the base current has been demonstrated previously for enhanced logic functionality [10]. In this letter, we propose a high-performance device named the bipolar-enhanced TFET (BET-FET), where the HBT is combined with a V_G-controlled tunneling junction. The holes are generated in the collector-base (CB) tunneling junction, operated as a TFET. These holes flow to the base-emitter (BE) junction, leading to high electron injection from the emitter. Our simulated device shows both high I_{ON} and low SS over a much wider range of current than a TFET. The BET-FET has a certain similarity with the insulated-gate bipolar transistor (IGBT) [11] in the sense that they both use a switching device to trigger the bipolar transistor. However, the BET-FET triggered by a TFET has sharper switching and simpler structure than the IGBT.

II. STRUCTURE, OPERATING PRINCIPLE, AND PERFORMANCE

The 2-D TCAD simulations are performed with the “Sentaurus” device simulator using the dynamic nonlocal tunneling model for BTBT, where the tunneling rate depends on the band-diagram profile along the tunneling path [12]. Our simulation included Shockley–Read–Hall recombination, doping-dependent bandgap narrowing, and electric field- and doping-dependent mobility models.

Fig. 1(a) shows the simulated vertical BET-FET device structure, which is symmetrical and has a short sidewall gate close to the source. Analogous vertical device structures with either one or two independent sidewall gates have already been implemented in standard MOSFETs and TFETs [7], [8], [13], [14], so the fabrication of the vertical BET-FET should pose no fundamental challenge. Both source and drain are heavily n$^+$-doped (10^{20} cm$^{-3}$) and used as collector and emitter, respectively. A p$^+$-type Si$_{1-x}$Ge$_x$ layer with doping concentration of 2×10^{19} cm$^{-3}$ is placed above the drain and used as the base, albeit without any direct base contact. The vertical n$^+$ Si source/p$^+$-Si$_{1-x}$Ge$_x$ base/n$^+$ Si drain structure forms an HBT, biased in the conventional way with the source grounded and the drain negatively biased ($V_D < 0$). The reverse-biased CB junction is used as tunneling junction controlled by the sidewall gates through a 1-nm equivalent oxide [4]. The tunneling layer beneath the gate is 10-nm Si$_{1-x}$Ge$_x$ with 5-nm overlap and separated from the base by an undoped Si buffer layer for reducing the ambipolar tunneling leakage as in a conventional TFET [3].

The operating principle of the BET-FET is shown in Fig. 1(b). In the OFF state, at $V_G = 0$, the tunneling gap in the reverse-biased CB junction is large. This suppresses the tunneling current (the HBT base current), leading to negligible emitter-collector current as in a floating-base HBT [10]. In the ON state, at large $|V_G|$, the tunneling gap at the CB junction becomes very small [see Fig. 1(c)]. This allows electrons to tunnel to the collector and leaves holes in tunneling region. The hole current (I_p) flows to the BE junction and forward biases it, like a standard base current. A high electron current (I_n) is then injected from the emitter into the base and subsequently drifts to the collector as in an HBT [see Fig. 1(b) and (c)]. Note that the hole injection barrier formed by the valence-band offset (~ 0.21 eV) at T_{on}/T_{off} Interface is much lower than the tunneling bandgap (~ 0.86 eV). Therefore, the hole current is governed by the tunneling junction. Further, a graded Si$_{1-x}$Ge$_x$...
transition at the T_{buf} boundary can be used to smooth out the hole injection barrier. Bipolar-enhanced tunneling has been studied previously as a leakage-causing effect in silicon-on-insulator MOSFETs [15], but here, it provides a mechanism for a sharp-switching device with high I_{ON}—the BET-FET.

Fig. 2(a) shows the I_D--V_G characteristics of the BET-FET at $V_D = -1.5$ V with Ge content $x = 0.3$ in both base and tunneling layer and the gate work-function set to 5 eV. For comparison, a conventional TFET with the same tunnel layer as in Fig. 1(a), but a p^+-doped Si-doped drain was also simulated. The difference between the BET-FET and the TFET results from the bipolar amplification.

Compared to the conventional TFET, the BET-FET has much higher $I_{\text{ON}} > 4$ mA/μm at $V_G = -1.5$ V. The bipolar current gain of BET-FET, referenced to the TFET, is low under low I_D due to the carrier recombination in BE junction and ramps up as I_D increases. The highest current gain is achieved at $I_D \sim 0.1$ mA/μm and then decreases due to high injection, as in a standard HBT [16]. Fig. 2(b) compares the SS values in BET-FET and TFET. As usual, the conventional TFET exhibits SS < 60 mV/dec over a limited two-decade range of I_D, whereas the BET-FET has SS < 60 mV/dec over seven decades of current.

III. SCALABILITY

The carrier flows in the BET-FET biased at $V_D = V_G = -1.5$ V are shown in Fig. 3. The holes are generated by BTBT in the gated Si$_{1-x}$Ge$_x$ tunneling layer on both sides of the collector stripe L_C and flow to the BE junction, spreading over the entire L_C, as shown in Fig. 3(a).

The electrons are injected over the entire BE junction area, diffuse across T_{base}, and then drift through the undoped buffer region to the collector, as shown in Fig. 3(b). Due to the high gain of the Si/Si$_{1-x}$Ge$_x$ HBT, the electron current density is much higher than the hole density everywhere except near the negatively biased gates.

The scaling capability of the BET-FET is studied by reducing the collector stripe width L_C from 50 to 10 nm. With $L_C = 10$ nm, the threshold voltage is markedly reduced, due to the enhancement of electric field at the tunneling junction [see Fig. 4(a)] [17]. However, the current at high $|V_G|$ is also reduced, due to the suppression of electron flow by the $V_G < 0$ V at both sidewall gates [see Fig. 4(b)]. In order to restore the electron flow, a BET-FET with two independent gates is simulated in Fig. 4(c), with the gate voltage V_G ramped from 0 to -1.5 V while $V_{G2} = 1.5$ V. The threshold voltage is increased due to the interchannel coupling effect. The negatively biased V_G provides the BTBT hole base current at one sidewall, while positive V_{G2} restores the electron flow at the other, leading to high I_{ON} even with $L_C = 10$ nm. The fabrication of the two independent gates could use the process as in [13] and [18].
amplification of an HBT. Although we have focused on CMOS-
the merits of the TFET’s sharp switching with the high-current
conventional TFET. The operation of the BET-FET combines
seven decades of current, which significantly outperforms the
high current HBT. The limiting factor for the BET-FET speed will
future direction of MOSFET and TFET research.
One way to address this issue is to use lower bandgap materials,
tunneling junction and forward-biased BE junction of the HBT.
FET needs to be high enough to drive both the reverse-biased
and a conventional vertical TFET with D>V
D<V
D>V
D>V
D>V
0.6 V but degrades
L<60mV
L<60mV
L<60mV
L<60mV
L<60mV
L<60mV
0.5 V. This is due to the fact that the |V
D| in a BET-
FET needs to be high enough to drive both the reverse-biased
tunneling junction and forward-biased BE junction of the HBT.
One way to address this issue is to use lower bandgap materials,
such as III–V semiconductors [9], which is compatible with the
future direction of MOSFET and TFET research.
The operation speed of the BET-FET is expected to be higher
than that of a conventional TFET, since it is basically a high-
current HBT. The limiting factor for the BET-FET speed will
rise from the RC delay of the gate capacitor (same as in a
MOSFET).

IV. DISCUSSION

The performance of BET-FET is determined by both the
bipolar gain and BTBT current. Fig. 5(a) shows that the increase
of x from 0 to 0.3 in the base enhances the current gain and |ION|
Higher Ge content in the tunneling layer increases the tunneling
current and reduces the threshold voltage, owing to lower E_G,
see Fig. 5(b). The TFET current could be further enhanced by
increasing the Ge content, but above x = 0.3, defect generation
due to lattice mismatch may be an issue [19].

Fig. 6 compares the I_D–V_G characteristics of the BET-
and a conventional vertical TFET with L_C = 50 nm, showing
that the I_D in BET-FET is large for |V_D| ≥ 0.6 V but degrades
below that, becoming lower than that in a conventional TFET
at |V_D| < 0.5 V. This is due to the fact that the |V_D| in a BET-
FET needs to be high enough to drive both the reverse-biased
tunneling junction and forward-biased BE junction of the HBT.
One way to address this issue is to use lower bandgap materials,
such as III–V semiconductors [9], which is compatible with the
future direction of MOSFET and TFET research.
The operation speed of the BET-FET is expected to be higher
than that of a conventional TFET, since it is basically a high-
current HBT. The limiting factor for the BET-FET speed will
rise from the RC delay of the gate capacitor (same as in a
MOSFET).

V. CONCLUSION

We proposed and simulated a bipolar-enhanced TFET with
high I_ON of > 4 mA/μm and low SS of < 60 mV/dec in over
seven decades of current, which significantly outperforms the
conventional TFET. The operation of the BET-FET combines
the merits of the TFET’s sharp switching with the high-current
amplification of an HBT. Although we have focused on CMOS-
compatible Si/Si1−xGeX materials, the same devices can be
built in all of the III–V heterostructures that can sustain a high-
gain HBT.

REFERENCES

transistors (TFETs) with subthreshold swing (SS) less than 60 mV/dec,”
C. Tabone, B. Previtali, and S. Deleonibus, “Impact of SOI, Si1−xGe_x-OI
and GeOI substrates on CMOS compatible tunnel FET performance,” in
FETs on SOI: Suppression of ambipolar leakage, low-frequency noise
behavior, and modeling,” Solid State Electron., vol. 65/66, pp. 226–233,
gate strained-Ge heterostructure tunneling FET (TFET) with record high
drive currents and < 60 mV/dec subthreshold slope,” in Proc. IEEE Int.
T. Mayer, V. Narayanan, D. Schom, and A. Liu, “Experimental demon-
stration of 100 nm channel length In0.53Ga0.47As-based vertical inter-
band tunnel field effect transistors (TFETs) for ultra-low-power logic
and SRAM applications,” in Proc. IEEE Int. Electron Devices Meeting,
R. Kotlyar, W. Liu, D. Lubychev, M. Metz, and N. Mukherjee, “Fabrica-
tion, characterization, and physics of III–V heterojunction tunneling field
effect transistors (H-TFET) for steep sub-threshold swing,” in Proc. IEEE
junction bipolar transistors with a pseudomorphic GaAsSb base,” Appl.
SiGe/InAs heterojunction bipolar transistor with no base contact and
enhanced logic functionality,” IEEE Electron Device Lett., vol. 18, no. 9,
V. Narayanan, J. Fastenau, D. Lubychev, and A. Liu, “Demonstration of
MOSFET-like on-current performance in arsenide/antimonide tunnel
FETs with staggered hetero-junctions for 300 mV logic applications,” in
chitecture for sub 10 nm node applications,” in Proc. Device Res. Conf.,
induced-drain-leakage (GIDL) current in short-channel SOI MOSFET
and its application in measuring lateral bipolar current gain beta,” IEEE
M. M. Heyns, and G. Groeseneken, “Multiple-gate tunneling field effect
transistors with sub-60 mV/dec subthreshold slope,” in Proc. Extended
and E. Suzuki, “A highly threshold voltage-controllable 4T FinFET with
8-nm gate length trigate pFETs on strained SGOI for high performance CMOS,” in