Local discontinuous Galerkin methods for the carpet cloak model

Xinyue Yu, * Jichun Li, † Chi-Wang Shu ‡

January 30, 2022

Abstract.

The DG methods have been shown to have good performance in numerical simulations of the carpet cloak model in [32]. However, the stability analysis and the error estimate are left to be done. In this paper, we introduce the leap-frog DG methods to solve the carpet cloak model. We prove the stability of the semi-discrete scheme, the sub-optimal error estimate for unstructured meshes, and the optimal error estimate for tensor-product meshes. Then, the fully discrete scheme is stated and the stability is proved. Finally, the numerical accuracy tests on rectangular and triangular meshes are given respectively, and the results of numerical simulations of the wave propagation in the carpet cloak model using the DG scheme are presented.

Keywords – Discontinuous Galerkin method, Maxwell’s equations, metamaterials, leap-frog scheme.

1 Introduction

Since Leonhardt [26] and Pendry et al. [40] firstly demonstrated the idea of invisibility cloak design with metamaterials in 2006, much study has been done in both theoretical and numerical analysis. There are a plenty of excellent works on the mathematical analysis of the cloaking phenomenon [1, 23, 17, 18], and on the numerical simulations of the cloaking models with the finite difference (FD) methods [19, 22, 36], the finite element (FE) methods [4, 25, 30, 39], and the spectral methods [46, 47]. For more details, readers can consult the review papers [2, 6, 21], and the monographs [15, 20, 29, 38] as references. In 2014, Li et al. proposed the mathematical analysis for the time-domain carpet cloak model [30]. In [32], a revised finite difference method for the carpet cloak model was developed, and the corresponding stability analysis was performed with the time step constraint $\tau = O(h^2)$, where τ and h are the time step size and spatial mesh size respectively. In order to relax the time step constraint to $\tau = O(h)$, the usual requirement for the FD or the FE methods to solve the time-dependent Maxwell equations, a new energy was introduced in [34]; moreover, the finite element method coupled with two time discretization methods to solve the carpet cloak model was developed therein.

The discontinuous Galerkin (DG) method was initially proposed by Reed and Hill [42] to solve the neutron transport problem. Later, Cockburn and Shu introduced the Runge-Kutta DG (RKDG)
methods for solving the linear and nonlinear hyperbolic partial differential equations (PDEs) [11, 12], and the local DG (LDG) methods for solving the time-dependent convection-diffusion systems [13], which stimulated the rapid development and application of the DG methods [14, 45]. The DG method shares the advantages of the continuous finite element methods, including flexible h-p adaptivity and easy handling of the complicated geometry. Additionally, it has unique nice features, such as it has the local mass matrix because of the discontinuous basis, it allows easy handling of hanging nodes and adaptivity, and it has high parallel efficiency. Attracted by the good properties of the DG methods, mathematicians have developed the DG methods to solve the Maxwell equations in free space [5, 7, 10, 16, 44], and in dispersive media [24, 37, 44]. For the Maxwell equations in the metamaterials, there are published works on the DG methods to solve the Drude models [27, 28, 33, 35, 43], the Maxwell equations in nonlinear optical media [3], and the wave propagation in media with dielectrics and metamaterials [8].

In [32], the DG method was carried out to solve the carpet cloak model, and it gave a good performance in numerical simulations. However, the stability analysis and the error estimate of the method were left to be done. This paper is a follow up of [32], and the rest of the paper is organized as follows. In Sect. 2, the governing equations for the carpet cloak model are presented. In Sect. 3, we propose the semi-discrete DG method for the model, and prove its stability. Next, we provide a sub-optimal error estimate in the L^2 norm on unstructured meshes, and an optimal error estimate on tensor-product rectangular meshes. Then, a fully discrete DG method with the leap-frog time discretization is presented in sect. 4, followed by the corresponding stability analysis. Sect. 5 shows several numerical experiments, including the accuracy tests for the proposed DG method. Additionally, the wave propagation simulations in the carpet cloak region are also demonstrated in this section. Finally, we give the concluding remarks in Sect. 6.

2 The governing equations

The governing equations for modeling the wave propagation in the carpet cloak are derived in [31] and given as follows (cf. [31, (2.3)-(2.5)]):

\[\partial_t D_x = \frac{\partial H}{\partial y}, \]
\[\partial_t D_y = -\frac{\partial H}{\partial x}, \] (2)
\[\varepsilon_0 \lambda_2 (M_A^{-1} \partial_{k^2} E + \omega_p^2 M_A^{-1} E) = \partial_{k_2} D + M_C D, \] (3)
\[\mu_0 \mu \partial_t H = -\nabla \times E, \] (4)

where we denote $D := (D_x, D_y)'$ for the 2D electric displacement, $E := (E_x, E_y)'$ for the 2D electric field, and H for the magnetic field. Furthermore, we denote $\partial_k u$ for the k-th derivative $\partial^k u/\partial t^k$ of a function u. For any $k \geq 1$, we adopt the 2D vector and scalar curl operators:

\[\nabla \times H = \left(\frac{\partial H}{\partial y} - \frac{\partial H}{\partial x} \right)', \quad \nabla \times E = \frac{\partial E_y}{\partial x} - \frac{\partial E_x}{\partial y}, \quad \forall E = (E_x, E_y)'. \]

Note that (3) is revised from [31, (2.4)] by left-multiplying both sides with M_A^{-1} and by denoting matrix $M_C = M_A^{-1} M_B$. Here we denote M_A^{-1} as the inverse of the matrix M_A, which is proved to be symmetric positive definite [31, Lemma 2.1]. As shown in Fig. 1, the governing equations (1)-(4)
hold true in the cloaking region formed by the quadrilateral with vertices \((-d, 0), (0, H_1), (d, 0)\) and \((0, H_2)\), where \(d, H_1\) and \(H_2\) are positive constants and \(H_2 > H_1 > 0\). The cloaked region, where the hiding objects can be placed, is formed by the triangle with vertices \((0, H_1), (-d, 0)\) and \((d, 0)\).

Figure 1: Left: The structure of the carpet cloak. Right: The setup of the carpet cloak simulation.

In order to make those objects inside the cloaked region invisible, the permittivity and permeability in the cloaking region need to be specially designed and are given by [31]:

\[
\varepsilon = \begin{bmatrix} a & b \\ b & c \end{bmatrix} := \begin{bmatrix} \frac{H_2}{H_2-H_1} & -\frac{H_1 H_2}{H_2-H_1} \cdot \text{sgn}(x) \\ -\frac{H_1 H_2}{H_2-H_1} \cdot \text{sgn}(x) & \frac{H_2}{H_2-H_1} \end{bmatrix} \left(\frac{H_1 H_2}{H_2-H_1} \right)^2, \quad \mu = a,
\]

where \(\text{sgn}(x)\) denotes the sign function. Furthermore, in (1)-(3), the \(\varepsilon_0\) and \(\mu_0\) denote the permittivity and permeability in free space, respectively; the matrices \(M_A\) and \(M_B\) are given as [31, p.1138]:

\[
M_A = \begin{pmatrix} p_1^2 \lambda_2 + p_2^2 & p_2 p_4 + p_1 p_3 \lambda_2 \\ p_2 p_4 + p_1 p_3 \lambda_2 & p_3^2 \lambda_2 + p_4^2 \end{pmatrix}, \quad M_B = \begin{pmatrix} p_2^2 & p_2 p_4 \\ p_2 p_4 & p_4^2 \end{pmatrix},
\]

where the positive constant \(\omega_p\) is the plasma frequency resulting from the Drude dispersion model [31, p.1138], elements \(p_i, i = 1, 2, 3, 4\), are

\[
p_1 = \sqrt{\frac{\lambda_2 - a}{\lambda_2 - \lambda_1}}, \quad p_2 = -\sqrt{\frac{a - \lambda_1}{\lambda_2 - \lambda_1}} \cdot \text{sgn}(x), \quad p_3 = \sqrt{\frac{\lambda_2 - c}{\lambda_2 - \lambda_1}} \cdot \text{sgn}(x), \quad p_4 = \sqrt{\frac{c - \lambda_1}{\lambda_2 - \lambda_1}},
\]

and \(\lambda_1\) and \(\lambda_2\) are the eigenvalues of matrix \(\varepsilon\) given as:

\[
\lambda_1 = \frac{a + c - \sqrt{(a-c)^2 + 4b^2}}{2}, \quad \lambda_2 = \frac{a + c + \sqrt{(a-c)^2 + 4b^2}}{2}.
\]

To complete the carpet cloak model (1)-(4), we assume that (1)-(4) satisfy the initial conditions

\[
\begin{align*}
D(x, 0) &= D_0(x), & E(x, 0) &= E_0(x), & H(x, 0) &= H_0(x), \\
\partial_t D(x, 0) &= D_1(x), & \partial_t E(x, 0) &= E_1(x), & \forall x \in \Omega,
\end{align*}
\] (5)
and the perfect conducting boundary condition (PEC):

\[n \times E = 0 \quad \text{on} \ \partial \Omega, \]

where \(D_0, D_1, E_0, E_1 \) and \(H_0 \) are some properly given functions, \(n \) is the unit outward normal vector to \(\partial \Omega \), and \(\Omega \) denotes a polygonal domain in \(\mathbb{R}^2 \).

Using the stability obtained in [34, Theorem 2.1] and replacing both \(\nabla \times E \) and \(\nabla \times \partial_t E \) by (4), we can rewrite Theorem 2.1 of [34] as below, which is totally different from those established in [31, 32].

\textbf{Theorem 2.1.} For the solution \((D, H, E)\) of (1)-(4), denote the energy

\[\text{ENG}(t) := \left[\varepsilon_0 \lambda_2 \| M_A^{-\frac{1}{2}} \partial_t E \|_2^2 + 2 \varepsilon_0 \lambda_2 \omega_p^2 \| M_A^{-\frac{1}{2}} \partial_t E \|_2^2 + \varepsilon_0 \lambda_2 \omega_p^4 \| M_A^{-\frac{1}{2}} E \|_2^2 \right] + \mu_0 \mu \left(\omega_p^2 \| \partial_t H \|_2^2 + \| \partial_t E \|_2^2 \right) + \varepsilon_0 \lambda_2 \omega_p^4 \| \partial_t E \|_2^2 + \| M_C^{-\frac{1}{2}} D \|_2^2 \right] (t). \]

(7)

Here and below we denote \(M_C^{\frac{1}{2}} \) for the square root of a matrix \(M_C \), and \(\| \cdot \|_2 := \| \cdot \|_{L^2(\Omega)} \). Then we have the following energy identity:

\[\text{ENG}(t) - \text{ENG}(0) = 2 \int_0^t \left[\varepsilon_0 \lambda_2 (M_A^{-1} \partial_t E + \omega_p^2 M_A^{-1} E, \partial_t D) + (M_C \partial_t D, \partial_t E) + \omega_p^2 (M_C D, \partial_t E) \right] dt. \]

(8)

Furthermore, this leads to the stability:

\[\text{ENG}(t) \leq \text{ENG}(0) \cdot \exp(C_s t), \quad \forall \ t \in [0, T], \]

(9)

where the constant \(C_s > 0 \) depends on the physical parameters \(\varepsilon_0, \mu_0, d, H_1, H_2 \) and \(\omega_p \).

\section{The semi-discrete LDG method}

In this section, we introduce the LDG method for the carpet cloak model. We consider a rectangular physical domain \(\Omega = [a, b] \times [c, d] \) to solve (1)-(4) for simplicity, and the domain is partitioned by a regular triangular mesh, \(\Omega = \bigcup_{e \in T_h} e \). Here \(T_h \) is a triangulation on \(\Omega \), and \(h \) is the mesh size, representing the largest diameter of all triangles. Tensor-product rectangular meshes will also be considered later. The time domain \([0, T]\) is discretized into \(N_t + 1 \) uniform intervals by discrete times \(0 = t_0 < t_1 < \cdots < t_{N_t+1} = T \), where \(t_n = n \cdot \tau \), and the time step size \(\tau = \frac{T}{N_t+1} \).

We denote \(V_h^k \) as the finite element space of piecewise polynomials, i.e.,

\[V_h^k = \{ v : v|_e \in P_k(e), \ \forall \ e \in T_h \}, \]

(10)

where \(P_k \) is the space of polynomials of degree less or equal to \(k \).

We denote \(u_h \) as the corresponding numerical solution of the variable \(u \), which is in the finite element space \(V_h^k \). Note that functions contained in \(V_h^k \) can have discontinuities across the element interfaces. In the line integral over the boundary of a cell, we denote \(\nu_h^{(in)} \) as the value of \(u_h \) taken
from inside of that cell, and $u_h^{(out)}$ from the neighboring cell sharing that boundary. Furthermore, (\cdot) and $\|\cdot\|$ are denoted as the inner product and the L^2 norm over the domain Ω respectively.

Then, the semi-discrete LDG method for (1)-(4) is generated as follows: Find $E_{xh}, E_{yh}, H_h, D_{xh}, D_{yh} \in C^1([0,T]; V^k_h)$ such that

$$\int_e \partial_t D_{xh} \phi_x + \int_e H_h \partial_y \phi_x - \int_{\partial e} \hat{H}_h \phi_x^{(in)} n_x^{(in)} = 0,$$

$$\int_e \partial_t D_{yh} \phi_y - \int_e H_h \partial_x \phi_y + \int_{\partial e} \hat{H}_h \phi_y^{(in)} n_y^{(in)} = 0,$$

$$\varepsilon_0 \lambda_2 \int_e (M^{-1}_A \partial_t E_h + \omega_p^2 M^{-1}_A E_h) \cdot u = \int_e (\partial_t D_h + M_C D_h) \cdot u,$$

$$\mu_0 \mu \int_e \partial_t H_h \psi - \int_e E_{yh} \partial_x \psi + \int_e E_{xh} \partial_y \psi + \int_{\partial e} (\hat{E}_{yh} n_x^{(in)} - \hat{E}_{xh} n_y^{(in)}) \psi^{(in)} = 0,$$

for all test functions $\phi_x, \phi_y, \psi, u_1, u_2 \in V^k_h$ and all triangle cells $e \in T_h$, where $u = (u_1, u_2)^t$. $\hat{H}_h, \hat{E}_{yh}, \hat{E}_{xh}$ are the cell boundary terms obtained from integration by parts, and they are the so-called numerical fluxes. On the cell boundary ∂e, $n^{(in)} = (n_x^{(in)}, n_y^{(in)})$ represents the unit normal vector pointing towards the outside of the element e.

To define the numerical fluxes in a triangulation, we firstly pick a fix direction β not parallel to any triangle boundary edge. On each boundary edge of an element, there is an outward normal direction, n, orthogonal to that edge. We call a side as the “right” side if $n \cdot \beta < 0$, and the “left” side if vice versa. We apply the commonly used alternating fluxes in LDG methods into our scheme, which are defined as choosing E_{xh} and E_{yh} on the “right” side and H_h on the “left” side:

$$\hat{E}_{xh} = E_{xh}^R,$$

$$\hat{E}_{yh} = E_{yh}^R,$$

$$\hat{H}_h = H_h^L.$$

A more detailed explanation of alternating fluxes for triangulations can be found in [45]. It is easy to check that in a rectangular mesh, when $\beta = (1, 1)$, the definitions of the “left” and “right” sides are consistent with the exact left (bottom) and right (top) sides on a vertical (horizontal) boundary. The above definition of alternating fluxes is enough when applying the periodic boundary condition. However, to satisfy the PEC boundary condition in (6), we take

$$\hat{E}_{xh} = 0, \text{ on } y = c, d,$$

$$\hat{E}_{yh} = 0, \text{ on } x = a, b,$$

$$\hat{H}_h = H_h^{(in)}, \text{ on } \partial \Omega.$$

3.1 The stability analysis

In this subsection, we will show that the solutions of our proposed semi-discrete DG method satisfy the same energy identity as in the continuous level (8), which leads to the stability of the method.
Theorem 3.1. For the semi-discrete DG method (11)-(14) with alternating fluxes (15)-(20), we define the energy:

\[
\text{ENG}_h(t) := \left[||\partial_t D_h||^2 + ||M_C^{\frac{1}{2}} D_h||^2 \right] + \epsilon_0 \lambda_2 \left[||M_A^{-\frac{1}{2}} \partial_t E_h||^2 + 2 \omega_p^2 ||M_A^{-\frac{1}{2}} \partial_t E_h||^2 + \omega_p^2 ||M_A^{-\frac{1}{2}} E_h||^2 \right] \\
+ \mu_0 \mu \left(\omega_p^2 ||\partial_t H_h||^2 + ||\partial_t^2 H_h||^2 \right)(t),
\]

then, the energy satisfies the following energy identity: For any \(t \geq 0 \):

\[
\text{ENG}_h(t) = \text{ENG}_h(0) + 2 \int_0^t \left[\epsilon_0 \lambda_2 \left(M_A^{-1} \partial_t E_h + \omega_p^2 M_A^{-1} E_h, \partial_t D_h \right) + \left(M_C \partial_t D_h, \partial_t E_h \right) + \omega_p^2 \left(M_C D_h, \partial_t E_h \right) \right] (s) \, ds.
\]

Furthermore, it leads to the stability:

\[
\text{ENG}_h(t) \leq \exp(C^* t) \cdot \text{ENG}_h(0), \quad \forall t \in [0, T],
\]

with the constant \(C^* \) depending only on the physical parameters \(\epsilon_0, \mu_0, d, H_1, H_2 \) and \(\omega_p \).

Proof. To make our proof easy to follow, we divide the proof into several major parts.

(I) Choosing \(u = \partial_t D_h \) in (13), we obtain

\[
\frac{1}{2} \frac{d}{dt} \left[||\partial_t D_h||^2 + ||M_C^{\frac{1}{2}} D_h||^2 \right] = \epsilon_0 \lambda_2 \left(M_A^{-1} \partial_t E_h + \omega_p^2 M_A^{-1} E_h, \partial_t D_h \right).
\]

Differentiating (13) with respect to \(t \) and choosing \(u = \partial_t E_h \), we have

\[
\frac{\epsilon_0 \lambda_2}{2} \frac{d}{dt} \left[||M_A^{-\frac{1}{2}} \partial_t E_h||^2 + \omega_p^2 ||M_A^{-\frac{1}{2}} \partial_t E_h||^2 \right] = \left(\partial_t D_h + M_C \partial_t D_h, \partial_t E_h \right).
\]

Adding (24) and (25) together, we obtain

\[
\frac{1}{2} \frac{d}{dt} \left[||\partial_t D_h||^2 + ||M_C^{\frac{1}{2}} D_h||^2 + \epsilon_0 \lambda_2 \left(||M_A^{-\frac{1}{2}} \partial_t E_h||^2 + \omega_p^2 ||M_A^{-\frac{1}{2}} \partial_t E_h||^2 \right) \right]
= \epsilon_0 \lambda_2 \left(M_A^{-1} \partial_t E_h + \omega_p^2 M_A^{-1} E_h, \partial_t D_h \right) + \left(\partial_t D_h + M_C \partial_t D_h, \partial_t E_h \right).
\]

(II) To control the term \(E_h \) on the right hand side (RHS) of (26), we choose \(u = \partial_t E_h \) in (13) to obtain

\[
\frac{\epsilon_0 \lambda_2}{2} \frac{d}{dt} \left[||M_A^{-\frac{1}{2}} \partial_t E_h||^2 + \omega_p^2 ||M_A^{-\frac{1}{2}} E_h||^2 \right] = \left(\partial_t D_h + M_C D_h, \partial_t E_h \right).
\]

Multiplying (27) by \(\omega_p^2 \), then adding the result to (26), we have

\[
\frac{1}{2} \frac{d}{dt} \left[||\partial_t D_h||^2 + ||M_C^{\frac{1}{2}} D_h||^2 + \epsilon_0 \lambda_2 \left(||M_A^{-\frac{1}{2}} \partial_t E_h||^2 + 2 \omega_p^2 ||M_A^{-\frac{1}{2}} \partial_t E_h||^2 + \omega_p^2 ||M_A^{-\frac{1}{2}} E_h||^2 \right) \right]
= \epsilon_0 \lambda_2 \left(M_A^{-1} \partial_t E_h + \omega_p^2 M_A^{-1} E_h, \partial_t D_h \right) + \left(\partial_t D_h + M_C \partial_t D_h, \partial_t E_h \right) + \omega_p^2 \left(\partial_t D_h + M_C D_h, \partial_t E_h \right).
\]
(III) Now we need to control the terms $\partial_3 \mathbf{D}_h$ and $\partial_2 \mathbf{D}_h$ on the RHS of (28). Differentiating both (11) and (12) with respect to t, choosing $\phi_x = \partial_t E_{xh}$ and $\phi_y = \partial_t E_{yh}$ in (11) and (12), respectively, then adding the results together, we have

$$\int_e \partial_2 \mathbf{D}_h \cdot \partial_2 \mathbf{E}_h + \int_e \partial_1 H_h(\partial_y \partial_t E_{xh} - \partial_x \partial_t E_{yh})$$

$$- \int_e \partial_1 \hat{H}_h \partial_t E^{(in)}_{xh} n^y + \int_e \partial_1 \hat{H}_h \partial_t E^{(in)}_{yh} n^x = 0.$$

(29)

Differentiating (14) with respect to t, choosing $\psi = \partial_t H_h$, then using integration by parts, we have

$$\mu_0 \mu \int_e \partial_2 h_h \partial_t H_h + \int_e \partial_1 H_h(\partial_x \partial_t E_{yh} - \partial_y \partial_t E_{xh}) - \int_e \partial_1 E^{(in)}_{yh} \partial_1 H^{(in)}_h n^x$$

$$+ \int_e \partial_1 E^{(in)}_{xh} \partial_1 H^{(in)}_h n^y + \int_e (\partial_t \hat{E}_{yh} n^x - \partial_t \hat{E}_{xh} n^y) \partial_1 H^{(in)}_h = 0.$$

(30)

Adding (29) and (30) together over all elements, we have

$$\sum_{e \in \mathcal{T}_h} \int_e \partial_2 \mathbf{D}_h \cdot \partial_2 \mathbf{E}_h + \frac{\mu_0 \mu}{2} \frac{d}{dt} \|\partial_t H_h\|^2 + F_x - F_y = 0,$$

(31)

where we denote

$$F_x = \sum_{e \in \mathcal{T}_h} \int_e \left(-\partial_1 \hat{H}_h \partial_t E^{(in)}_{xh} n^y + \partial_1 H^{(in)}_h \partial_t E^{(in)}_{xh} n^y - \partial_1 H^{(in)}_h \partial_t \hat{E}_{xh} n^y \right),$$

(32)

$$F_y = \sum_{e \in \mathcal{T}_h} \int_e \left(\partial_1 \hat{H}_h \partial_t E^{(in)}_{yh} n^x - \partial_1 H^{(in)}_h \partial_t E^{(in)}_{yh} n^x + \partial_1 H^{(in)}_h \partial_t \hat{E}_{yh} n^x \right).$$

(33)

By regrouping terms by sides of the elements and using the definitions of the numerical fluxes \hat{H}_h and \hat{E}_{xh}, we have:

$$F_x = \sum_{s \in \mathcal{S}_I} n^R_s \int_s (-\partial_t H^{Lh}_h \partial_t E^{R}_{xh} + \partial_t H^{Lh}_h \partial_t E^{L}_{xh} + \partial_t H^{R}_h \partial_t E^{R}_{xh} - \partial_t H^{R}_h \partial_t E^{L}_{xh} - \partial_t H^{R}_h \partial_t E^{R}_{xh} + \partial_t H^{Lh}_h \partial_t E^{R}_{xh})$$

$$+ \sum_{s \in \mathcal{S}_{Top}} n^R_s \int_s (-\partial_1 \hat{H}_h \partial_t E^{(in)}_{xh} + \partial_1 H^{(in)}_h \partial_t E^{(in)}_{xh} - \partial_1 H^{(in)}_h \partial_t \hat{E}_{xh})$$

$$+ \sum_{s \in \mathcal{S}_{Bottom}} n^R_s \int_s (-\partial_1 \hat{H}_h \partial_t E^{(in)}_{xh} + \partial_1 H^{(in)}_h \partial_t E^{(in)}_{xh} - \partial_1 H^{(in)}_h \partial_t \hat{E}_{xh}) = 0,$$

(34)

where \mathcal{S}_I denotes the set of all non-boundary sides, \mathcal{S}_{Top} represents the set of sides on $y = d$, and \mathcal{S}_{Bottom} on $y = c$.

Similarly, we can prove that $F_y = 0$.

7
Then using the results of $F_x = F_y = 0$ in (31), we obtain
\[
\sum_{e \in T_h} \int_{e} \partial_{12} \mathbf{D}_h \cdot \partial_t \varepsilon_h = -\frac{\mu_0 \mu}{2} \frac{d}{dt} \| \partial_t \varepsilon_h \|^2. \quad (35)
\]

Following the same argument, we can prove that
\[
\sum_{e \in T_h} \int_{e} \partial_{13} \mathbf{D}_h \cdot \partial_{12} \varepsilon_h = -\frac{\mu_0 \mu}{2} \frac{d}{dt} \| \partial_{12} \varepsilon_h \|^2. \quad (36)
\]

Substituting (35) and (36) into (28), we obtain
\[
\frac{1}{2} \frac{d}{dt} \left[\| \partial_t \mathbf{D}_h \|^2 + \| M_C^{-\frac{1}{2}} \mathbf{D}_h \|^2 + \epsilon_0 \lambda_2 \left(\| M_A^{-\frac{1}{2}} \partial_t \varepsilon_h \|^2 + 2\omega_p^2 \| M_A^{-\frac{1}{2}} \partial_t \varepsilon_h \|^2 + \omega_p^4 \| M_A^{-\frac{1}{2}} \varepsilon_h \|^2 \right) \right] + \mu_0 \mu \left(\omega_p^2 \| \partial_t \varepsilon_h \|^2 + \| \partial_{12} \varepsilon_h \|^2 \right) = \epsilon_0 \lambda_2 \left(M_A^{-1} \partial_{12} \varepsilon_h + \omega_p^2 M_A^{-1} \varepsilon_h, \partial_{12} \mathbf{D}_h \right) + (M_C \partial_{12} \mathbf{D}_h, \partial_{12} \varepsilon_h) + \omega_p^2 (M_C \mathbf{D}_h, \partial_{12} \varepsilon_h). \quad (37)
\]

Integrating (37) with respect to t from 0 to t, we obtain the energy identity (22). Then we apply the Cauchy-Schwarz inequality to all terms in the RHS of (37), and use the Gronwall inequality to complete the proof. \hfill \square

3.2 The error analysis

In this section, we will show the sub-optimal error estimate of the semi-discrete DG method on unstructured meshes, and the optimal error estimate of the DG method with a modified alternating flux on tensor-product rectangular meshes with tensor-product DG spaces.

3.2.1 The error analysis on unstructured meshes

Denote the errors between the exact solutions (E_x, E_y, D_x, D_y, H) of (1)-(4) and the corresponding numerical solutions $(E_{xh}, E_{yh}, D_{xh}, D_{yh}, H_h)$ of the semi-discrete scheme (11)-(14) as
\[
\mathcal{E}_{E_x} = E_x - E_{xh}, \quad \mathcal{E}_{E_y} = E_y - E_{yh}, \quad \mathcal{E}_{D_x} = D_x - D_{xh}, \quad \mathcal{E}_{D_y} = D_y - D_{yh}, \quad \mathcal{E}_H = H - H_h,
\]
and define $\mathcal{E}_D = (\mathcal{E}_{D_x}, \mathcal{E}_{D_y})$, and $\mathcal{E}_E = (\mathcal{E}_{E_x}, \mathcal{E}_{E_y})$.

Subtracting (11)-(14) from the weak formulation of the PDEs (1)-(4), we obtain the following error equations:
\[
\begin{align*}
\int_{e} \partial_t \mathcal{E}_{D_x} \phi_x + \int_{e} \mathcal{E}_H \partial_y \phi_x - \int_{e} \hat{\mathcal{E}}_H \phi_x^{(in)} n_y^{(in)} &= 0, \quad (38) \\
\int_{e} \partial_t \mathcal{E}_{D_y} \phi_y - \int_{e} \mathcal{E}_H \partial_x \phi_y + \int_{e} \hat{\mathcal{E}}_H \phi_y^{(in)} n_x^{(in)} &= 0, \quad (39) \\
\epsilon_0 \lambda_2 \int_{e} \left(M_A^{-1} \partial_{12} \mathcal{E}_E + \omega_p^2 M_A^{-1} \mathcal{E}_E \right) \cdot \mathbf{u} &= \int_{e} \left(\partial_{12} \mathcal{E}_D + M_C \mathcal{E}_D \right) \cdot \mathbf{u}, \quad (40) \\
\mu_0 \mu \int_{e} \partial_t \mathcal{E}_H \psi - \int_{e} \mathcal{E}_{E_y} \partial_x \psi + \int_{e} \mathcal{E}_{E_x} \partial_y \psi + \int_{e} \hat{\mathcal{E}}_{E_y} n_x^{(in)} - \hat{\mathcal{E}}_{E_x} n_y^{(in)} \psi^{(in)} &= 0. \quad (41)
\end{align*}
\]

Then, we have the following theorem:
Theorem 3.2. Suppose that the analytical solutions \((E_x, E_y, D_x, D_y, H)\) of (1)-(4) are smooth enough, and \((E_{xh}, E_{yh}, D_{xh}, D_{yh}, H_h)\) are the corresponding numerical solutions of (11)-(14). With the alternating flux (15)-(17) and the PEC boundary condition (18)-(20), we have the following error estimate:

\[
\left[\|\partial_tD - \partial_tD_h\|^2 + \|M_C^\frac{1}{2}(D - D_h)\|^2\right] + \varepsilon_0 \lambda_2 \left(\|M_A^\frac{1}{2} \partial_{t2}(E - \partial_{t2}E_h)\|^2 + 2\omega_p^2\|M_A^\frac{1}{2}(\partial_tE - \partial_tE_h)\|^2\right) \\
+ \omega_p^4\|M_A^{-\frac{1}{2}}(E - E_h)\|^2 + \mu_0\mu (\omega_p^2\|\partial_tH - \partial_tH_h\|^2 + \|\partial_{t2}H - \partial_{t2}H_h\|^2)\right] (t) \\
\leq Ch^{2k} + \left[\|\partial_tD - \partial_tD_h\|^2 + \|M_C^\frac{1}{2}(D - D_h)\|^2\right] + \varepsilon_0 \lambda_2 \left(\|M_A^\frac{1}{2} \partial_{t2}(E - \partial_{t2}E_h)\|^2 + 2\omega_p^2\|M_A^\frac{1}{2}(\partial_tE - \partial_tE_h)\|^2\right) \\
+ \omega_p^4\|M_A^{-\frac{1}{2}}(E - E_h)\|^2 + \mu_0\mu (\omega_p^2\|\partial_tH - \partial_tH_h\|^2 + \|\partial_{t2}H - \partial_{t2}H_h\|^2)\right] (0).
\]

(42)

Here \(k \geq 1\) is the order of the basis function \(V_h^k\), and \(C\) is a positive constant independent of the mesh size \(h\).

Proof. We first decompose each of the error function \((E_{E_x}, E_{E_y}, E_{D_x}, E_{D_y}, E_H)\) into two parts respectively:

\[
E_{E_x} = E_x - E_{xh} = (\Pi E_x - E_{xh}) - (\Pi E_x - E_x) := \xi_{E_x} - \eta_{E_x}, \\
E_{E_y} = E_y - E_{yh} = (\Pi E_y - E_{yh}) - (\Pi E_y - E_y) := \xi_{E_y} - \eta_{E_y}, \\
E_{D_x} = D_x - D_{xh} = (\Pi D_x - D_{xh}) - (\Pi D_x - D_x) := \xi_{D_x} - \eta_{D_x}, \\
E_{D_y} = D_y - D_{yh} = (\Pi D_y - D_{yh}) - (\Pi D_y - D_y) := \xi_{D_y} - \eta_{D_y}, \\
E_H = H - H_h = (\Pi H - H_h) - (\Pi H - H) := \xi_H - \eta_H,
\]

where \(\Pi\) presents the standard \(L_2\) projection onto \(V_h^k\).

Similar as the stability proof, we take \(u = \partial_t\xi_D\) and \(u = \partial_t\xi_E\) respectively in (40), and we differentiate (40) with respect to \(t\) and let \(u = \partial_{t2}\xi_D\). Then we sum over all elements in the domain. By putting all terms containing \(\eta\) to the RHS, and the rest terms to the left hand side (LHS), we get:

\[
\frac{1}{2} \frac{d}{dt} \left[\|\partial_t\xi_D\|^2 + \|M_C^\frac{1}{2}\xi_D\|^2\right] - \varepsilon_0 \lambda_2 \left(M_A^{-1}\partial_{t2}\xi_E + \omega_p^2M_A^{-1}\xi_E, \partial_t\xi_D\right) = \\
\left(\partial_{t2}\eta_D, \partial_t\xi_D\right) + \left(M_C\eta_D, \partial_t\xi_D\right) - \varepsilon_0 \lambda_2 \left(M_A^{-1}\partial_{t2}\eta_E + M_A^{-1}\eta_E, \partial_t\xi_D\right),
\]

(43)

\[
\frac{\varepsilon_0 \lambda_2}{2} \frac{d}{dt} \left[\|M_A^{-\frac{1}{2}}\partial_{t2}\xi_E\|^2 + \omega_p^2\|M_A^{-\frac{1}{2}}\xi_E\|^2\right] - \left(\partial_{t2}\xi_D + M_C\xi_D, \partial_t\xi_E\right) = \\
\varepsilon_0 \lambda_2 \left(M_A^{-1}\partial_{t2}\eta_E, \partial_t\xi_E\right) + \varepsilon_0 \lambda_2 \omega_p^2 \left(M_A^{-1}\eta_E, \partial_t\xi_E\right) - \left(\partial_{t2}\eta_D + M_C\eta_D, \partial_t\xi_E\right),
\]

(44)
\[\frac{\varepsilon_0 l_2}{2} \frac{d}{dt} \left[\| M^{-1} \partial_t \xi e \|^2 + \omega_p^2 \| M^{-1} \partial_t \xi e \|^2 \right] - (\partial_{t2} \xi e_D + M_C \partial_t \xi e_D, \partial_{t2} \xi e) = \]

\[\varepsilon_0 l_2 \left(M^{-1} \partial_t \eta \xi e, \partial_{t2} \xi e \right) + \varepsilon_0 l_2 \omega_p^2 \left(M^{-1} \partial_t \eta \xi e, \partial_{t2} \xi e \right) - (\partial_{t3} \eta \xi D + M_C \partial_t \eta \xi D, \partial_{t2} \xi e) , \]

where \(\xi D = (\xi_{Dx}, \xi_{Dy}) \), and \(\xi e = (\xi e_x, \xi e_y) \). \(\eta D \) and \(\eta e \) are defined similarly.

Next, we differentiate (38), (39), and (41) with respect to \(t \), and choose \(\phi_x = \partial_t \xi e_x, \phi_y = \partial_t \xi e_y \) and \(\psi = \partial_t \xi H \) respectively. Then we sum up these three equations, and sum over all elements in the domain to obtain:

\[(\partial_{t2} \xi D, \partial_t \xi e) + \mu_0 \mu (\partial_{t2} \xi H, \partial_t \xi H) + (\partial_{t1} \xi e, \partial_y \partial_t \xi e_x - \partial_x \partial_t \xi e_y) - (\partial_t \xi e_y, \partial_x \partial_t \xi H) + (\partial_{t2} \xi e_x, \partial_y \partial_t \xi H) \]

\[\sum_{e \in \mathcal{T}_h} \left(-\int_{\partial e} \partial_t \xi H \partial_t \xi e_{ex} \eta y(n) + \int_{\partial e} \partial_t \xi H \partial_t \xi e_{ey} \eta x(n) + \int_{\partial e} \left(\partial_t \xi e_y n_x(n) - \partial_t \xi e_{ex} n_y(n) \right) \partial_t \xi e_{H}(n) \right) = 0. \]

By applying the error decomposition, we have:

\[(\partial_{t2} \xi D, \partial_t \xi e) + \mu_0 \mu (\partial_{t2} \xi H, \partial_t \xi H) + (\partial_{t1} \xi e, \partial_y \partial_t \xi e_x - \partial_x \partial_t \xi e_y) - (\partial_t \xi e_y, \partial_x \partial_t \xi H) + (\partial_{t2} \xi e_x, \partial_y \partial_t \xi H) \]

\[\sum_{e \in \mathcal{T}_h} \left(-\int_{\partial e} \partial_t \xi H \partial_t \xi e_{ex} \eta y(n) + \int_{\partial e} \partial_t \xi H \partial_t \xi e_{ey} \eta x(n) + \int_{\partial e} \left(\partial_t \xi e_y n_x(n) - \partial_t \xi e_{ex} n_y(n) \right) \partial_t \xi e_{H}(n) \right). \]

Using the same argument as the stability analysis on the LHS, we obtain:

\[(\partial_{t2} \xi D, \partial_t \xi e) + \frac{\mu_0 l_2}{2} \partial_t \| \partial_t \xi H \|^2 = \]

\[(\partial_{t2} \xi D, \partial_t \xi e) + \mu_0 \mu (\partial_{t2} \eta H, \partial_t \xi H) + (\partial_{t1} \eta H, \partial_y \partial_t \xi e_x - \partial_x \partial_t \xi e_y) - (\partial_t \eta e_y, \partial_x \partial_t \xi H) + (\partial_{t2} \eta e_x, \partial_y \partial_t \xi H) \]

\[\sum_{e \in \mathcal{T}_h} \left(-\int_{\partial e} \partial_t \eta H \partial_t \xi e_{ex} \eta y(n) + \int_{\partial e} \partial_t \eta H \partial_t \xi e_{ey} \eta x(n) + \int_{\partial e} \left(\partial_t \eta e_y n_x(n) - \partial_t \eta e_{ex} n_y(n) \right) \partial_t \xi e_{H}(n) \right). \]

Similarly, by differentiating (38), (39), and (41) with respect to \(t^2 \), and choosing \(\phi_x = \partial_{t2} \xi e_x, \phi_y = \partial_{t2} \xi e_y \) and \(\psi = \partial_{t2} \xi H \) respectively, we have:

\[(\partial_{t2} \xi D, \partial_t \xi e) + \frac{\mu_0 l_2}{2} \partial_t \| \partial_{t2} \xi H \|^2 = \]

\[(\partial_{t2} \xi D, \partial_t \xi e) + \mu_0 \mu (\partial_{t3} \eta H, \partial_{t2} \xi H) + (\partial_{t2} \eta H, \partial_y \partial_{t2} \xi e_x - \partial_x \partial_{t2} \xi e_y) - (\partial_{t2} \eta e_y, \partial_x \partial_{t2} \xi H) + (\partial_{t3} \eta e_x, \partial_y \partial_{t2} \xi H) \]

\[\sum_{e \in \mathcal{T}_h} \left(-\int_{\partial e} \partial_{t2} \eta H \partial_{t2} \xi e_{ex} \eta y(n) + \int_{\partial e} \partial_{t2} \eta H \partial_{t2} \xi e_{ey} \eta x(n) + \int_{\partial e} \left(\partial_{t2} \eta e_y n_x(n) - \partial_{t2} \eta e_{ex} n_y(n) \right) \partial_{t2} \xi e_{H}(n) \right). \]
We multiply (44) and (48) by \(\omega_p^2 \) and sum them with (43), (45) and (49) to attain the formula with the LHS equaling to:

\[
LHS = \frac{1}{2} \frac{d}{dt} \left[||\partial_t \xi_D||^2 + ||M_C^\frac{1}{2} \partial_t \xi_D||^2 + \epsilon_0 \lambda_2 \left(||M_A^{-\frac{1}{2}} \partial_t \xi_E||^2 + 2 \omega_p^2 ||M_A^{-\frac{1}{2}} \partial_t \xi_E||^2 + \omega_p^4 ||M_A^{-\frac{1}{2}} \xi_E||^2 \right) \right.
\]
\[
+ \mu_0 \left(\omega_p^2 ||\partial_t \xi_H||^2 + ||\partial_2 \xi_H||^2 \right) \right] - \epsilon_0 \lambda_2 \left(M_A^{-1} \partial_1 \xi_E + \omega_p^2 M_A^{-1} \xi_E, \partial_t \xi_D \right)
\]
\[
- \left(M_C \partial_t \xi_D, \partial_2 \xi_E \right) - \omega_p^2 \left(M_C \xi_D, \partial_t \xi_E \right).
\]

Next, we consider the RHS. Using the fact that \(\xi_{E_x}, \xi_{E_y}, \xi_{D_x}, \xi_{D_y}, \) and \(\xi_H \) are in space \(P_k(e) \), the property of the projections \(\Pi v = \Pi v \), and the definition of the \(L_2 \) projections:

\[
\int_e (\Pi u - u)v dx = 0 \quad \forall v \in P_k(e),
\]

we conclude that all inner products of \(\eta \) and \(\xi \) terms equal to zero. Therefore, we obtain:

\[
RHS = \sum_{e \in T_h} \left(\omega_p^2 \left(- \int_{\partial e} \partial_1 \eta_H \partial_1 \xi_{E_x}^{(in)} n_y^{(in)} + \int_{\partial e} \partial_1 \eta_H \partial_1 \xi_{E_y}^{(in)} n_x^{(in)} + \int_{\partial e} (\partial_1 \eta_{E_y} n_x^{(in)} - \partial_1 \eta_{E_x} n_y^{(in)}) \partial_1 \xi_H^{(in)} \right) \right.
\]
\[
- \int_{\partial e} \partial_2 \eta_H \partial_2 \xi_{E_x}^{(in)} n_y^{(in)} + \int_{\partial e} \partial_2 \eta_H \partial_2 \xi_{E_y}^{(in)} n_x^{(in)} + \int_{\partial e} (\partial_2 \eta_{E_y} n_x^{(in)} - \partial_2 \eta_{E_x} n_y^{(in)}) \partial_2 \xi_H^{(in)} \right).
\]

Consider the first term on the RHS, by applying the Cauchy-Schwarz inequality firstly, and using the approximating property of polynomial preserving operators (Theorem 3.4.1 in [9]) on the \(\eta_H \) and the standard inverse inequality [9] on the \(\xi_{E_x} \), we have

\[
\sum_{e \in T_h} \int_{\partial e} \partial_1 \eta_H \partial_1 \xi_{E_x}^{(in)} n_y^{(in)} \left(\frac{1}{\delta} \int_{\partial e} \left| \partial_1 \eta_H \right|^2 + \delta h \int_{\partial e} \left| \partial_1 \xi_{E_x}^{(in)} \right|^2 \right)
\]
\[
\leq C \sum_{e \in T_h} \left(\frac{1}{\delta} \| \partial_1 \eta_H \|_{L^\infty(e)}^2 + \delta h^2 \| \partial_1 \xi_{E_x} \|_{L^\infty(e)}^2 \right)
\]
\[
\leq C h^{2k} \| \partial_1 H \|_{H^{k+1}(\Omega)}^2 + C \| \partial_1 \xi_{E_x} \|_{L^2(\Omega)}^2,
\]

with any \(\delta > 0 \). Note that the constant \(C \)'s may have different values in each term, but they are all independent of the mesh size \(h \).

Using the same arguments on the remaining terms, we obtain the following inequality:
\[\frac{1}{2} \frac{d}{dt} \left[\| \partial_t \xi D \|^2 + \| M_{\xi} \xi D \|_h^2 + \epsilon_0 \lambda_2 \left(\| M_A^{-\frac{1}{2}} \partial_\xi E \|_D^2 + 2 \omega_p^2 \| M_A^{-\frac{1}{2}} \partial_\xi E \|_A^2 + \omega_p^2 \| M_A^{-\frac{1}{2}} \xi E \|_A^2 \right) \right] \\
+ \mu_0 \mu \left(\omega_p^2 \| \partial_t \xi H \|_D^2 + \| \partial_\xi \xi H \|_A^2 \right) \leq C \lambda h^2 \left(\| \partial_t E \|_{H_{k+1}}^2 + \| \partial_\xi E \|_{H_{k+1}}^2 + \| \partial_t H \|_{H_{k+1}}^2 + \| \partial_\xi H \|_{H_{k+1}}^2 \right) \\
+ C \left(\| \partial_t E \|_D^2 + \| \partial_\xi E \|_A^2 + \| \partial_t H \|_A^2 \right) \leq \epsilon_0 \lambda_2 \left(M_A^{-1} \partial_\xi E + \omega_p^2 M_A^{-1} \xi E, \partial_t D \right) \\
+ \left(M_C \partial_\xi D, \partial_\xi E \right) + \omega_p^2 \left(M_C \xi D, \partial_\xi E \right). \]}

(53)

Finally, applying the Cauchy-Schwarz inequality, and then using the Gronwall inequality, the error estimates of the \(L_2 \) projections, and the triangle inequality, we can conclude the proof. \(\square \)

3.2.2 The error analysis on rectangular meshes

In general, using the flux and boundary condition (15)-(20), the stability and error analysis on tensor-product rectangular meshes are the same as those on triangular meshes. However, inspired by [33], if we modify the fluxes at the PEC boundary by adding suitable jump terms, and by using tensor-product DG spaces, the optimal error accuracy can be proved mathematically, and can be observed in the numerical tests.

We firstly define the rectangular mesh. For simplicity, we consider a rectangular domain \(\Omega = [a_x, b_x] \times [a_y, b_y] \), which is discretized by the cells \(I_{ij} = [x_{i-\frac{1}{2}}, x_{i+\frac{1}{2}}] \times [y_{j-\frac{1}{2}}, y_{j+\frac{1}{2}}] \) for \(1 \leq i \leq N_x \) and \(1 \leq j \leq N_y \). The mesh sizes are defined as \(h_i^x = x_{i+\frac{1}{2}} - x_{i-\frac{1}{2}} \) and \(h_j^y = y_{j+\frac{1}{2}} - y_{j-\frac{1}{2}} \), with \(h_i^x = \max_{1 \leq i \leq N_x} h_i^x, h_j^y = \max_{1 \leq j \leq N_y} h_j^y \), and \(h = \max(h_i^x, h_j^y) \). The finite element space \(V_h^k \) is chosen as:

\[V_h^k = \{ v : v|_{I_{ij}} \in Q^k(I_{ij}) \} \]

where \(Q^k(I_{ij}) \) is the space of the tensor products of one dimensional polynomials with degree at most \(k \) over the cell \(I_{ij} \). For simplicity, we denote \(u_h(x_{i+\frac{1}{2}}, y) \) (or \(u_h(x_{i+\frac{1}{2}}, y) \)) and \(u_h(x_{i+\frac{1}{2}}, y) \) (or \(u_h^-(x_{i+\frac{1}{2}}, y) \)) as the limit value of \(u_h \) at \(x_{i+\frac{1}{2}} \) from the right cell \(I_{i+1,j} \), and from the left cell \(I_{i,j} \) respectively. \(u_h(x_j, y_{j+\frac{1}{2}}) \) (or \(u_h(x_{i+\frac{1}{2}}, y_{j+\frac{1}{2}}) \)) and \(u_h^+(x_{i+\frac{1}{2}}, y_{j+\frac{1}{2}}) \) (or \(u_h^-(x_{i+\frac{1}{2}}, y_{j+\frac{1}{2}}) \)) are defined similarly. By setting the fixed direction \(\beta = (1,1) \), the alternating fluxes become:

\[\hat{E}_{xh}(x, y_{j+\frac{1}{2}}) = \hat{E}_{xh}^+(x, y_{j+\frac{1}{2}}), \tag{54} \]
\[\hat{E}_{yh}(x_{i+\frac{1}{2}}, y) = \hat{E}_{yh}^+(x_{i+\frac{1}{2}}, y), \tag{55} \]
\[\hat{H}_h(x, y_{j+\frac{1}{2}}) = H_{h}^-(x, y_{j+\frac{1}{2}}), \tag{56} \]
\[\hat{H}_h(x_{i+\frac{1}{2}}, y) = H_{h}^+(x_{i+\frac{1}{2}}, y). \tag{57} \]

To achieve the optimal convergence, instead of letting the fluxes \(\hat{H}_h(x, y_{\frac{1}{2}}) = H^+(x, y_{\frac{1}{2}}) \) and
\(\hat{H}_h(x_\frac{1}{2}, y) = H^+(x_\frac{1}{2}, y) \) as in (20), we apply the PEC boundary condition as stated below:

\[
\begin{align*}
\hat{E}_{xh}(x, y_\frac{1}{2}) &= 0, \\
\hat{E}_{yh}(x_\frac{1}{2}, y) &= 0,
\end{align*}
\]

(58) \(\hat{H}_{xh}(x, y_\frac{1}{2}) = H^+_h(x, y_\frac{1}{2}) + c_0 \left[E_{xh}(x, y_\frac{1}{2}) \right], \quad (60) \)

(59) \(\hat{H}_{yh}(x_\frac{1}{2}, y) = H^+_h(x_\frac{1}{2}, y) - c_0 \left[E_{yh}(x_\frac{1}{2}, y) \right]. \quad (61) \)

The constant \(c_0 \) is independent of the mesh size \(h \), and in the following numerical tests, \(c_0 \) is chosen as \(\frac{1}{2} \). We denote \(||u|| = u^+ - u^- \) as the jump cross the cell boundaries. Here \(||E_{xh}(x, y_\frac{1}{2})|| = \hat{E}_{xh}(x, y_\frac{1}{2}) - 0, \) and \(||E_{yh}(x_\frac{1}{2}, y)|| = \hat{E}_{yh}(x_\frac{1}{2}, y) - 0. \)

Using the fluxes and boundary conditions (54)-(61), and following the same argument as in section 3.1, we can verify the stability of the method. For the error analysis, we have the following theorem:

Theorem 3.3. Suppose that the analytical solutions \((E_x, E_y, D_x, D_y, H)\) of (1)-(4) are smooth enough, and \((E_{xh}, E_{yh}, D_{xh}, D_{yh}, H_h)\) are the corresponding numerical solutions of (11)-(14) on the rectangular mesh. With the alternating flux (54)-(57) and the PEC boundary condition (58)-(61), we have the following error estimate:

\[
\begin{align*}
\left[||\partial_t D - \partial_t D_h||^2 + ||M^\frac{1}{2}_C(D - D_h)||^2 + \epsilon_0 \lambda_2 \left(||M^\frac{1}{2}_A \partial_{x2}E - \partial_{x2}E_h||^2 + 2\omega^2_p ||M^\frac{1}{2}_A \partial_{t2}E - \partial_{t2}E_h||^2 \right) \\
+ \omega^2_p ||M^\frac{1}{2}_A (E - E_h)||^2 \right] + \mu_0 \mu \left(\omega^2_p ||\partial_t H - \partial_t H_h||^2 + ||\partial_{x2}H - \partial_{x2}H_h||^2 \right) (t)
\leq C h^{2k+2} + \\
\left[||\partial_t D - \partial_t D_h||^2 + ||M^\frac{1}{2}_C(D - D_h)||^2 + \epsilon_0 \lambda_2 \left(||M^\frac{1}{2}_A \partial_{x2}E - \partial_{x2}E_h||^2 \\
+ 2\omega^2_p ||M^\frac{1}{2}_A \partial_{x2}E - \partial_{x2}E_h||^2 \right) + \mu_0 \mu \left(\omega^2_p ||\partial_t H - \partial_t H_h||^2 + ||\partial_{x2}H - \partial_{x2}H_h||^2 \right) \right] (0).
\end{align*}
\]

(62)

The \(k \geq 1 \) is the order of the basis function \(V_h^k \), and \(C \) is a positive constant independent of the mesh size \(h \).

Proof. To prove the theorem, we firstly need to define some new projections [33]. The 1D projections in the x direction

\[
P^\pm_x : H^1(I_i) \to P_k(I_i)
\]

are defined as the functions in the \(k \)-th degree polynomial space that satisfy

\[
\int_{I_i} (P^+_x u - u) v dx = 0 \quad \forall v \in P_{k-1}(I_i), \quad \text{and} \quad P^+_x u(x^+_i - \frac{1}{2}) = u(x^+_i - \frac{1}{2}),
\]

(63)
\[
\int_{I_i} (P_x^+ u - u)vdx = 0 \quad \forall v \in \mathcal{P}_{k-1}(I_i), \quad \text{and} \quad P_x^- u(x_{i+\frac{1}{2}}^-) = u(x_{i+\frac{1}{2}}^-). \tag{64}
\]

The 1D projections in the y direction \(P_y^\pm\) are defined in the same way. Besides, we denote the standard \(L_2\) projections in the \(x\) and \(y\) directions as

\[
P_x : H^1(I_i) \to \mathcal{P}_k(I_i), \quad P_y : H^1(I_i) \to \mathcal{P}_k(I_i).
\]

Next, we use the tensor products of the 1D projections to define the 2D projections in cell \(I_{ij}\). In particular, we define the projection

\[
\Pi_1 = P_x \otimes P_y^+ : H^2(I_{ij}) \to Q_k(I_{ij}),
\]

which satisfies that: For any \(u \in H^2(I_{ij})\) and any test function \(\phi \in Q_k(I_{ij})\):

\[
\int_{I_{ij}} \Pi_1 u(x, y) \frac{\partial \phi(x, y)}{\partial y} dxdy = \int_{I_{ij}} u(x, y) \frac{\partial \phi(x, y)}{\partial y} dxdy, \tag{65}
\]

\[
\int_{I_i} \Pi_1 u \left(x, y_{j-\frac{1}{2}}^+\right) \phi \left(x, y_{j-\frac{1}{2}}^+\right) dx = \int_{I_i} u \left(x, y_{j-\frac{1}{2}}^+\right) \phi \left(x, y_{j-\frac{1}{2}}^+\right) dx. \tag{66}
\]

The projection

\[
\Pi_2 = P_x^+ \otimes P_y : H^2(I_{ij}) \to Q_k(I_{ij}),
\]

which satisfies that: For any \(u \in H^2(I_{ij})\) and any \(\phi \in Q_k(I_{ij})\):

\[
\int_{I_{ij}} \Pi_2 u(x, y) \frac{\partial \phi(x, y)}{\partial y} dxdy = \int_{I_{ij}} u(x, y) \frac{\partial \phi(x, y)}{\partial y} dxdy, \tag{67}
\]

\[
\int_{I_j} \Pi_2 u \left(x_{i+\frac{1}{2}}, y\right) \phi \left(x_{i+\frac{1}{2}}, y\right) dy = \int_{I_j} u \left(x_{i+\frac{1}{2}}, y\right) \phi \left(x_{i+\frac{1}{2}}, y\right) dy. \tag{68}
\]

The projection

\[
\Pi_3 = P_x^- \otimes P_y^- : H^2(I_{ij}) \to Q_k(I_{ij}),
\]

which satisfies that: For any \(u \in H^2(I_{ij})\) and any \(\phi \in Q_{k-1}(I_{ij})\):

\[
\int_{I_{ij}} \Pi_3 u(x, y) \phi(x, y) dxdy = \int_{I_{ij}} u(x, y) \phi(x, y) dxdy, \tag{69}
\]

\[
\int_{I_i} \Pi_3 u \left(x, y_{j+\frac{1}{2}}^-\right) \phi \left(x, y_{j+\frac{1}{2}}^-\right) dx = \int_{I_i} u \left(x, y_{j+\frac{1}{2}}^-\right) \phi \left(x, y_{j+\frac{1}{2}}^-\right) dx, \tag{70}
\]

\[
\int_{I_j} \Pi_3 u \left(x_{i+\frac{1}{2}}, y\right) \phi \left(x_{i+\frac{1}{2}}, y\right) dy = \int_{I_j} u \left(x_{i+\frac{1}{2}}, y\right) \phi \left(x_{i+\frac{1}{2}}, y\right) dy, \tag{71}
\]

\[
\Pi_3 u \left(x_{i+\frac{1}{2}}, y_{j+\frac{1}{2}}^-\right) = u \left(x_{i+\frac{1}{2}}, y_{j+\frac{1}{2}}^-\right). \tag{72}
\]

Finally, the usual 2D \(L_2\) projection is denoted as

\[
\Pi_4 = P_x \otimes P_y : H^2(I_{ij}) \to Q_k(I_{ij}).
\]
The good properties of the projections including the uniqueness and the optimal error estimate can be viewed in lemmas 3.1-3.3 in [33].

The errors between the exact solutions and the numerical solutions can be decomposed by using the above projections:

\[\mathcal{E}_{E_x} = E_x - E_{xh} = (\Pi_1 E_x - E_{xh}) - (\Pi_1 E_x - E_x) : = \xi_{E_x} - \eta_{E_x}, \]

\[\mathcal{E}_{E_y} = E_y - E_{yh} = (\Pi_2 E_y - E_{yh}) - (\Pi_2 E_y - E_y) : = \xi_{E_y} - \eta_{E_y}, \]

\[\mathcal{E}_{D_x} = D_x - D_{xh} = (\Pi_4 D_x - D_{xh}) - (\Pi_4 D_x - D_x) : = \xi_{D_x} - \eta_{D_x}, \]

\[\mathcal{E}_{D_y} = D_y - D_{yh} = (\Pi_4 D_y - D_{yh}) - (\Pi_4 D_y - D_y) : = \xi_{D_y} - \eta_{D_y}, \]

\[\mathcal{E}_H = H - H_h = (\Pi_3 H - H_h) - (\Pi_3 H - H) : = \xi_H - \eta_H, \]

Then, following the exact steps in Sect. 3.2.1, and using definitions of the projections (63)-(72) and the above projections:

\[\frac{1}{2} \frac{d}{dt} \left[||\partial_t \xi_D||^2 + ||M_C^{1/2} \xi_D||^2 + \varepsilon_0 \lambda_2 \left(||M_A^{-1/2} \partial_t \xi_E||^2 + 2 \omega_p^2 ||M_A^{-1/2} \partial_t \xi_E||^2 + \omega_p^2 ||M_A^{-1/2} \xi_E||^2 \right) \right. \]

\[+ \mu_0 \mu \left(\omega_p^2 ||\partial_t \xi_H||^2 + ||\partial_t \xi_H||^2 \right) \right] \leq GD + \omega_p^2 \left(\sum_{j=1}^{N_x} \text{TEX}_j(\partial_t \eta_H, \partial_t \xi_{E_x}) + \sum_{i=1}^{N_y} \text{TEY}_i(\partial_t \eta_H, \partial_t \xi_{E_y}) \right) \]

\[+ \sum_{j=1}^{N_y} \text{TEX}_j(\partial_t \xi_H, \partial_t \xi_{E_x}) + \sum_{i=1}^{N_x} \text{TEY}_i(\partial_t \xi_H, \partial_t \xi_{E_y}) \]

\[- \omega_p^2 \left(\sum_{i=1}^{N_x} c_0 \int_{I_i} (\partial_t \xi_{E_x}^+(x, y))^2 + \sum_{j=1}^{N_y} c_0 \int_{J_i} (\partial_t \xi_{E_y}^+(x, y))^2 \right) \]

\[- \left(\sum_{i=1}^{N_x} c_0 \int_{I_i} (\partial_t \xi_{E_x}^+(x, y))^2 + \sum_{j=1}^{N_y} c_0 \int_{J_i} (\partial_t \xi_{E_y}^+(x, y))^2 \right). \]

(73)

The GD, which contains all good terms, is defined as:

\[GD = -\varepsilon_0 \lambda_2 \left(M_A^{-1} \partial_t \xi_E, \partial_t \xi_D \right) + \varepsilon_0 \lambda_2 \omega_p^4 \left(M_A^{-1} \eta_E, \partial_t \xi_D \right) + \varepsilon_0 \lambda_2 \omega_p^2 \left(M_A^{-1} \partial_t \eta_E, \partial_t \xi_E \right) \]

\[+ \varepsilon_0 \lambda_2 \omega_p^4 \left(M_A^{-1} \eta_E, \partial_t \xi_E \right) + \varepsilon_0 \lambda_2 \left(M_A^{-1} \partial_t \eta_E, \partial_t \xi_E \right) + \varepsilon_0 \lambda_2 \omega_p^2 \left(M_A^{-1} \eta_E, \partial_t \xi_E \right) \]

\[+ \mu_0 \mu \omega_p^2 (\partial_t \xi_H, \partial_t \xi_H) + \mu_0 \mu (\partial_t \xi_H, \partial_t \xi_H) + \varepsilon_0 \lambda_2 \left(M_A^{-1} \partial_t \xi_E + \omega_p^2 M_A^{-1} \xi_E, \partial_t \xi_D \right) \]

\[+ \left(M_C \partial_t \xi_D, \partial_t \xi_E \right) + \omega_p^2 \left(M_C \xi_D, \partial_t \xi_E \right), \]

(74)

and the terms \(\text{TEX}_j(\eta_H, \xi_{E_x}) \) and \(\text{TEY}_i(\eta_H, \xi_{E_y}) \) are defined as

\[\text{TEX}_j = \sum_{i=1}^{N_x} \left(- \int_{I_i} \left(\eta_H \xi_{E_x}^+(x, y_{j+1}) - \eta_H \xi_{E_x}^+(x, y_j) \right) + \int_{J_i} \eta_H \partial_y \xi_{E_x}^+(x, y) \right), \]

(75)
\[\text{TEY}_i = \sum_{j=1}^{N_y} \left(\int_{I_i} \left(\hat{\eta}_H \xi_{E_y}^+ (x_{i-\frac{1}{2}, y}) - \hat{\eta}_H \xi_{E_y}^- (x_{i+\frac{1}{2}, y}) \right) - \int_{I_{ij}} \eta_H \partial_x \xi_{E_y} \right). \] (76)

By using the following inequalities in [33, Lemmas 3.3-3.4]:

\[
\begin{align*}
\sum_{j=2}^{N_y} \text{TEX}_j(\eta_H, \xi_{E_x}) &\leq C h^{2k+2} + \| \xi_{E_x} \|^2, \\
\sum_{i=2}^{N_x} \text{TEY}_i(\eta_H, \xi_{E_y}) &\leq C h^{2k+2} + \| \xi_{E_y} \|^2,
\end{align*}
\]

\[
\begin{align*}
\text{TEX}_1(\eta_H, \xi_{E_x}) - \sum_{i=1}^{N_x} c_0 \int_{I_i} (\xi_{E_x}^+ (x, y_{\frac{1}{2}}))^2 &\leq C h^{2k+2} + \| \xi_{E_x} \|^2, \\
\text{TEY}_1(\eta_H, \xi_{E_y}) - \sum_{j=1}^{N_y} c_0 \int_{I_{ij}} (\xi_{E_y}^+ (x_{\frac{1}{2}}, y))^2 &\leq C h^{2k+2} + \| \xi_{E_y} \|^2,
\end{align*}
\]

we have

\[
\text{RHS} \leq GD + \omega^2 p (C h^{2k+2} + C \| \partial_t \xi_E \|^2) + (C h^{2k+2} + C \| \partial_{xx} \xi_E \|^2). \] (77)

Applying the Cauchy-Schwarz inequality on the good terms, and using the optimal error estimate of the projections (see lemma 3.3 in [43]), and finally applying the Gronwall inequality and the triangle inequality, we conclude the proof. \(\square\)

4 The fully-discrete DG method

In this section, we propose the leap-frog DG method to solve the carpet cloak model on unstructured meshes. Before we define the fully-discrete scheme, we introduce the following central difference operators in time: For any time sequence function \(u^n \),

\[
\delta_\tau u^{n+\frac{1}{2}} := \frac{u^{n+1} - u^n}{\tau}, \quad \delta_\tau^2 u^n := \frac{\delta_\tau u^{n+\frac{1}{2}} - \delta_\tau u^{n-\frac{1}{2}}}{\tau} = \frac{u^{n+1} - 2u^n + u^{n-1}}{\tau^2}.
\]

The averaging operators are defined as:

\[
\bar{u}^n = \frac{u^{n+1} + u^{n-1}}{2}, \quad \hat{u}^n = \frac{u^{n+\frac{1}{2}} + u^{n-\frac{1}{2}}}{2}.
\]

Moreover, we need the following discrete Gronwall inequality to prove the discrete stability:

Lemma 4.1. [41, Lemma. 4.1.2] Assume that the sequence \(u_n \) satisfies

\[
u_0 \leq g_0, \quad \text{and} \quad u_0 \leq g_0 + \tau \sum_{s=0}^{n-1} u_s, \quad \forall n \geq 1,
\]
where \(g_0, r \) and \(\tau \) are some positive constants. Then we have

\[
\begin{aligned}
 u_n \leq g_0 \cdot (1 + rt)^n \leq g_0 \cdot \exp(rn\tau), \quad \forall n \geq 1.
\end{aligned}
\]

Now we consider the following leap-frog LDG scheme: For any \(n \geq 0 \), find \(D^{n+1}_x, D^{n+1}_y, H^{n+\frac{1}{2}}_h, E^{n+1}_x, E^{n+1}_y \in V^k \) such that

\[
\begin{aligned}
 &\int E^{n+\frac{1}{2}}_x \phi_x + \int \hat{H}^{n+\frac{1}{2}}_h \phi_y - \int \hat{H}^{n+\frac{1}{2}}_h \phi_y n^{(in)}_y = 0, \\
 &\int E^{n+\frac{1}{2}}_y \phi_y - \int \hat{H}^{n+\frac{1}{2}}_h \phi_x + \int \hat{H}^{n+\frac{1}{2}}_h \phi_x n^{(in)}_x = 0, \\
 &\varepsilon_0\lambda_2 \int (M_A^{-1}\delta^2_\tau E^n_h + \omega^2_p M_A^{-1}\nabla^m_h) \cdot u = \int (\delta^2_\tau D^n_h + M_C \nabla^m_h) \cdot u, \\
 &\mu_0 \mu_0 \int \delta_\tau H^n_h \psi - \int \hat{E}^{n}_x \partial_x \psi + \int \hat{E}^{n}_y \partial_y \psi + \int \hat{E}^{n}_x \partial_y \psi + \int \hat{E}^{n}_y \partial_x \psi = 0,
\end{aligned}
\]

for all test functions \(\phi_x, \phi_y, u, \psi \in V^k \), with the following fluxes consistent with (15)-(20):

\[
\begin{aligned}
 &\hat{E}^{n}_x = E^{n,R}_x, \\
 &\hat{E}^{n}_y = E^{n,R}_y, \\
 &\hat{H}^{n+\frac{1}{2}}_h = H^{n+\frac{1}{2}}_h, \\
 &E^{n+1}_x = 0, \quad \text{on } y = c, d \\
 &E^{n+1}_y = 0, \quad \text{on } x = a, b \\
 &\hat{H}^{n+\frac{1}{2}}_h = H^{n+\frac{1}{2}}_h, \quad \text{on } \partial\Omega.
\end{aligned}
\]

With the above preparation, we can now prove the following energy identity, which is really the discrete form of the energy identity (22).

Theorem 4.2. For the solution \((D^{n+1}_h, H^{n+\frac{1}{2}}_h, E^{n+1}_h)\) of the leap-frog LDG scheme (79)-(82), we define the discrete energy at time level \(m \):

\[
\begin{aligned}
 &\text{ENG}_f(m) = || \delta_\tau D^{n+\frac{1}{2}}_h ||^2 + \frac{1}{2} \left(|| M_C^{-1} D^{n+1}_h ||^2 + || M_C^{-1} D^{n}_h ||^2 \right) + \varepsilon_0\lambda_2 || M_A^{-\frac{1}{2}} \delta^2_\tau E^{n+1}_h ||^2 \\
 &+ \frac{\varepsilon_0\lambda_2 \omega^2_p}{2} \left(|| M_A^{-\frac{1}{2}} \delta_\tau E^{n+\frac{1}{2}}_h ||^2 + || M_A^{-\frac{1}{2}} \delta_\tau E^{n-\frac{1}{2}}_h ||^2 \right) + \frac{\varepsilon_0\lambda_2 \omega^2_p}{2} \left(|| M_A^{-\frac{1}{2}} E^{n+1}_h ||^2 + || M_A^{-\frac{1}{2}} E^{n}_h ||^2 \right) \\
 &+ \mu_0 \mu \left[\omega^2_p (\delta_\tau H^{n+1}_h, \delta_\tau H^{n}_h) + (\delta^2_\tau H^{n+\frac{1}{2}}_h, \delta^2_\tau H^{n-\frac{1}{2}}_h) \right].
\end{aligned}
\]

Suppose the time step satisfies the constraint:

\[
\begin{aligned}
 \tau \leq \min \left\{ \frac{1}{\sqrt{\varepsilon_0\lambda_2 || M_A^{\frac{1}{2}} ||} + \frac{|| M_A^{\frac{1}{2}} \lambda_p ||}{2\sqrt{\varepsilon_0\lambda_2} \omega^2_p || M_C^{\frac{1}{2}} \lambda_A ||}}, \frac{\sqrt{\varepsilon_0\lambda_2}}{\omega^2_p || M_C^{\frac{1}{2}} \lambda_A ||} \right\},
\end{aligned}
\]
then we have

\[\text{ENG}_{1f}(m) \leq C \cdot \text{ENG}_{1f}(0) \cdot \exp(c m \tau), \quad \forall m \geq 1, \quad (91) \]

where \(C \) and \(c \) are positive constants independent of mesh size \(h \) and time step \(\tau \).

Proof. To make the proof easy to follow, we divide our proof into several major parts.

(I) Choosing \(u = \frac{\tau}{2} (\delta_r D_h^{n+\frac{1}{2}} + \delta_r D_h^{n-\frac{1}{2}}) = \tau \delta_r \tilde{D}_h^n \) in (81), and using the identity

\[
\left(M_C D_{h, n}^n, \frac{\tau}{2} (\delta_r D_h^{n+\frac{1}{2}} + \delta_r D_h^{n-\frac{1}{2}}) \right) = \frac{1}{4} (||M_C^2 D_h^{n+\frac{1}{2}}||^2 - ||M_C^2 D_h^{n-\frac{1}{2}}||^2), \quad (92)
\]

we have

\[
\frac{1}{2} (||\delta_r D_h^{n+\frac{1}{2}}||^2 - ||\delta_r D_h^{n-\frac{1}{2}}||^2) + \frac{1}{4} (||M_C^2 D_h^{n+\frac{1}{2}}||^2 - ||M_C^2 D_h^{n-\frac{1}{2}}||^2) = \tau \varepsilon_0 \lambda_2 \left[(M_A^{-1} \delta_r E_h^n, \delta_r \tilde{E}_h^n) + \omega_0^2 (M_A^{-1} E_h^n, \delta_r \tilde{E}_h^n) \right]. \quad (93)
\]

(II) Choosing \(u = \frac{\tau}{2} (\delta_r E_h^{n+\frac{1}{2}} + \delta_r E_h^{n-\frac{1}{2}}) = \tau \delta_r \tilde{E}_h^n \) in (81), and using the identity

\[
\left(M_A^{-1} E_{h, n}^n, \frac{\tau}{2} (\delta_r E_h^{n+\frac{1}{2}} + \delta_r E_h^{n-\frac{1}{2}}) \right) = \frac{1}{4} (||M_A^{-\frac{1}{2}} E_h^{n+\frac{1}{2}}||^2 - ||M_A^{-\frac{1}{2}} E_h^{n-\frac{1}{2}}||^2), \quad (94)
\]

we obtain

\[
\frac{\varepsilon_0 \lambda_2}{2} (||M_A^{-\frac{1}{2}} \delta_r E_h^{n+\frac{1}{2}}||^2 - ||M_A^{-\frac{1}{2}} \delta_r E_h^{n-\frac{1}{2}}||^2) + \frac{\varepsilon_0 \lambda_2 \omega_0^2}{4} (||M_A^{-\frac{1}{2}} E_h^{n+\frac{1}{2}}||^2 - ||M_A^{-\frac{1}{2}} E_h^{n-\frac{1}{2}}||^2) = \tau \left(\delta_r^2 D_h^n + M_C D_{h, n}^n, \delta_r \tilde{E}_h^n \right). \quad (95)
\]

Using (81) to subtract themselves with \(n \) replaced by \(n - 1 \), then choosing \(u = \frac{1}{2} (\delta_r^2 E_h^n + \delta_r E_h^{n-1}) = \frac{1}{2} \left(\delta_r^2 E_h^n + \delta_r E_h^{n-1} \right) \), and using the identity

\[
\left(M_A^{-1} (E_h^n - E_h^{n-1}), \frac{1}{2} (\delta_r^2 E_h^n + \delta_r E_h^{n-1}) \right) = \frac{1}{4} \left(M_A^{-1} (E_h^{n+1} + E_h^{n-1}) - (E_h^n + E_h^{n-2}), \delta_r E_h^{n+\frac{1}{2}} - \delta_r E_h^{n-\frac{1}{2}} \right) \quad (96)
\]

we have

\[
\frac{1}{4} (||M_A^{-\frac{1}{2}} \delta_r E_h^{n+\frac{1}{2}}||^2 - ||M_A^{-\frac{1}{2}} \delta_r E_h^{n-\frac{1}{2}}||^2), \quad (97)
\]

18
we obtain

\[
\frac{\varepsilon_0 \lambda_2}{2} (||M_A^{-\frac{1}{2}} \delta^2 E_h^n||^2 - ||M_A^{-\frac{1}{2}} \delta^2 E_h^{n-1}||^2) + \frac{\varepsilon_0 \lambda_2 \omega_p^2}{4} (||M_A^{-\frac{1}{2}} \delta_r E_h^{n+\frac{1}{2}}||^2 - ||M_A^{-\frac{1}{2}} \delta_r E_h^{n-\frac{1}{2}}||^2) = \tau \left(\delta^3 D_h^{n-\frac{1}{2}} + M_C \delta_r \mathcal{D}_h^{n-\frac{1}{2}}, \delta^2 \tilde{E}_h^{n-\frac{1}{2}} \right). \tag{97}
\]

(III) Multiplying \(\omega_p^2 \), and adding the result together with \(\text{(93) and (97)} \), we have

\[
\frac{1}{2} (||\delta_r D_h^{n+\frac{1}{2}}||^2 - ||\delta_r D_h^{n-\frac{1}{2}}||^2) + \frac{1}{4} (||M_A^{-\frac{1}{2}} D_h^{n+1}||^2 - ||M_A^{-\frac{1}{2}} D_h^{n-1}||^2) + \frac{\varepsilon_0 \lambda_2}{2} (||M_A^{-\frac{1}{2}} \delta^2 E_h^{n+1}||^2 - ||M_A^{-\frac{1}{2}} \delta^2 E_h^n||^2) + \frac{\varepsilon_0 \lambda_2 \omega_p^2}{4} (||M_A^{-\frac{1}{2}} \delta_r E_h^{n+\frac{1}{2}}||^2 - ||M_A^{-\frac{1}{2}} \delta_r E_h^{n-\frac{1}{2}}||^2) = \tau \frac{\varepsilon_0 \lambda_2 (M_A^{-1} \delta^2 E_h^n + \omega_p^2 M_A^{-1} E_h^n, \delta_r \tilde{D}_h^n)}{\delta_r \tilde{D}_h^{n+\frac{1}{2}} + M_C \delta_r \mathcal{D}_h^{n+\frac{1}{2}}, \delta^2 \tilde{E}_h^{n+\frac{1}{2}}} + \tau \frac{\omega_p^2}{2} (\delta^3 D_h^n + M_C \mathcal{D}_h^n, \delta_r \tilde{E}_h^n). \tag{98}
\]

After dividing both sides of \(\text{(98)} \) by \(\tau \), we can see that \(\text{(98)} \) is really a discrete form of \(\text{(28)} \)!

(IV) Similar to the semi-discrete case, now we need to bound the terms \(\delta^3 D_h^{n+\frac{1}{2}} \) and \(\delta^2 D_h^n \) on the RHS of \(\text{(98)} \).

Using \(\text{(79) and (80)} \) to subtract themselves with \(n \) replaced by \(n-1 \), respectively, then letting \(\phi_x = \frac{1}{\tau} \delta_r \tilde{E}_x^n \) and \(\phi_y = \frac{1}{\tau} \delta_r \tilde{E}_y^n \), and adding the results together, we have

\[
\int_c \delta^2 \tilde{D}_h^n \cdot \delta_r \tilde{E}_h^n + \int_c \delta_r \tilde{H}_h^n \cdot \partial_y \delta_r \tilde{E}_h^n - \int_c \delta_r \tilde{H}_h^n \cdot \partial_x \delta_r \tilde{E}_h^n - \int_{\partial e} \delta_r \tilde{H}_h^n \cdot \partial_y \tilde{E}_y^n - \int_{\partial e} \delta_r \tilde{H}_h^n \cdot \partial_x \tilde{E}_x^n + \int_{\partial e} \delta_r \tilde{H}_h^n \cdot \partial_y \tilde{E}_y^n (in) n_y (in) + \int_{\partial e} \delta_r \tilde{H}_h^n \cdot \partial_x \tilde{E}_x^n (in) n_x (in) = 0. \tag{99}
\]

Using \(\text{(82)} \) with \(n \) replaced by \(n+1 \) to subtract itself with \(n \) replaced by \(n-1 \), then choosing \(\psi = \frac{1}{\tau} \delta_x \tilde{H}_h^n \), and using the identity

\[
E_{y^n}^{n+1} - E_{y^n}^{n-1} = \tau \left(\frac{E_{y^n}^{n+1} - E_{y^n}^{n-1}}{\tau} + \frac{E_{y^n}^{n} - E_{y^n}^{n-1}}{\tau} \right) = \tau (\delta_x E_{y^n}^{n+\frac{1}{2}} + \delta_x E_{y^n}^{n-\frac{1}{2}}) = 2 \tau \delta_x \tilde{E}_{y^n}, \tag{100}
\]

we have

\[
\frac{\mu_0 \mu}{2 \tau} \int_c (\delta_r \tilde{H}_h^{n+1} - \delta_r \tilde{H}_h^{n-1}) \delta_r \tilde{H}_h^n - \int_c \delta_r \tilde{E}_y^n \cdot \partial_x \delta_r \tilde{H}_h^n + \int_c \delta_r \tilde{E}_x^n \cdot \partial_y \delta_r \tilde{H}_h^n + \int_{\partial e} (\delta_r \tilde{E}_y^n n_x (in) - \delta_r \tilde{E}_x^n n_y (in)) \delta_r \tilde{H}_h^n (in) = 0. \tag{101}
\]

Adding \(\text{(99) and (101)} \) together, then using integration by parts, and summing up the result
over all elements, we obtain

\[
\begin{align*}
(\delta^2 D^n_h, \delta_x \tilde{E}^n_h) + \frac{\mu_0 \mu}{2\tau} (\delta_r H_h^{n+1} - \delta_r H_h^{n-1}, \delta_r H_h^n) &+ \sum_{e \in T_h} \int_{\partial_e} \left(-\delta_r \tilde{H}_h^n \cdot \delta_r \tilde{E}_x y_h n_y + \delta_r \tilde{H}_h^n \cdot \delta_r \tilde{E}_y h n_x \right) \\
+ \sum_{e \in T_h} \int_{\partial_e} (\delta_r \tilde{H}^n_h \cdot \delta_r \tilde{E}_x h n_x^{(in)} + \delta_r \tilde{H}_h^n \cdot \delta_r \tilde{E}_y h n_y^{(in)}) \\
+ \sum_{e \in T_h} \int_{\partial_e} (\delta_r \tilde{E}_y h n_x^{(in)} - \delta_r \tilde{E}_x h n_y^{(in)}) \delta_r H_h^n = 0.
\end{align*}
\]

(102)

We assign all boundary integral terms of (102) into \(G_x\) and \(G_y\) classes:

\[
\begin{align*}
G_x = \sum_{e \in T_h} \int_{\partial_e} (\delta_r \tilde{H}^n_h \cdot \delta_r \tilde{E}_x h n_x^{(in)} + \delta_r H_h^n \cdot \delta_r \tilde{E}_x h n_x^{(in)} - \delta_r H_h^n \cdot \delta_r \tilde{E}_x h n_y^{(in)}) \\
G_y = \sum_{e \in T_h} \int_{\partial_e} (\delta_r \tilde{H}^n_h \cdot \delta_r \tilde{E}_y h n_x^{(in)} - \delta_r H_h^n \cdot \delta_r \tilde{E}_y h n_x^{(in)} + \delta_r H_h^n \cdot \delta_r \tilde{E}_y h n_y^{(in)}).
\end{align*}
\]

(103)

By regrouping terms by sides of the elements and using the definitions of the numerical fluxes \(\tilde{H}^n_h\) and \(\tilde{E}^n_h\), we have:

\[
\begin{align*}
G_x &= \sum_{s \in S_I} n_y^R \int_s \left(-\delta_r H_h^{n,L} \cdot \delta_r E_x h + \delta_r H_h^{n,L} \cdot \delta_r \tilde{E}_x h + \delta_r H_h^{n,R} \cdot \delta_r \tilde{E}_x h \\
&\quad - \delta_r H_h^{n,L} \cdot \delta_r \tilde{E}_x h - \delta_r H_h^{n,R} \cdot \delta_r \tilde{E}_x h + \delta_r H_h^{n,L} \cdot \delta_r \tilde{E}_x h \right) \\
&\quad + \sum_{s \in S_{Top}} n_y^R \int_s \left(-\delta_r H_h^{n,(in)} \delta_r \tilde{E}_x h + \delta_r H_h^{n,(in)} \delta_r \tilde{E}_x h - \delta_r H_h^{n,(in)} \delta_r \tilde{E}_x h \right) \\
&\quad + \sum_{s \in S_{Bottom}} n_y^R \int_s \left(-\delta_r H_h^{n,(in)} \delta_r \tilde{E}_x h + \delta_r H_h^{n,(in)} \delta_r \tilde{E}_x h - \delta_r H_h^{n,(in)} \delta_r \tilde{E}_x h \right) = 0,
\end{align*}
\]

(104)

where \(S_I\) denotes the set of all non-boundary sides, \(S_{Top}\) represents the set of sides on \(y = d\), and \(S_{Bottom}\) on \(y = c\).

Similarly, we can prove that \(G_y = 0\). Substituting \(G_x = G_y = 0\) into (102), we have

\[
(\delta^2 D^n_h, \delta_x \tilde{E}^n_h) = -\frac{\mu_0 \mu}{2\tau} (\delta_r H_h^{n+1} - \delta_r H_h^{n-1}, \delta_r H_h^n),
\]

(105)

which is the discrete form of (35).

(V) Following the same technique as (IV), we can obtain

\[
(\delta^3 D^n_h, \delta_x \tilde{E}^n_h) = -\frac{\mu_0 \mu}{2\tau} (\delta^2_r H_h^{n+\frac{1}{2}} - \delta^2_r H_h^{n-\frac{1}{2}}, \delta^2_r H_h^{n+\frac{1}{2}}),
\]

(106)

. which is the discrete form of (36).
we obtain

\begin{align*}
&\frac{1}{2} (||\delta^r D_h^{n+\frac{1}{2}}||^2 - ||\delta^r D_h^{n-\frac{1}{2}}||^2) + \frac{1}{4} (||M_C^\frac{1}{2} D_h^{n+1}||^2 - ||M_C^\frac{1}{2} D_h^{n-1}||^2) \\
&+ \frac{\varepsilon_0 \lambda^2}{2} (||M_A^{-\frac{1}{2}} \delta^r E_h^n||^2 - ||M_A^{-\frac{1}{2}} \delta^r E_h^n||^2) + \frac{\varepsilon_0 \lambda^2 \omega^2}{4} (||M_A^{-\frac{1}{2}} \delta^r E_h^{n+\frac{1}{2}}||^2 - ||M_A^{-\frac{1}{2}} \delta^r E_h^{n-\frac{1}{2}}||^2) \\
&+ \frac{\mu_0 \mu}{2} \left[\varepsilon_0 \lambda^2 (M_A^{-1} \delta^r E_h^n + \omega^2 M_A^{-1} E_h^n, \delta^r D_h^n) + \tau \left(M_C \delta^r E_h^n, \delta^r D_h^n \right) \right] \\
&\leq \tau \varepsilon_0 \lambda^2 (M_A^{-1} \delta^r E_h^n, \delta^r D_h^n) + \tau \omega^2 (M_C D_h^n, \delta^r E_h^n),
\end{align*}

which is the discrete form of (37).

Multiplying (107) by 2, then summing up the result from \(n = 1 \) to \(n = m \), and using the identity

\begin{align}
\sum_{n=1}^{m} (a_{n+1} - a_{n-1}, a_n) = (a_{m+1}, a_m) - (a_1, a_0),
\end{align}

we obtain

\begin{align}
ENG_{LF}(m) - ENG_{LF}(0) = \sum_{n=1}^{m} 2 \left[\tau \varepsilon_0 \lambda^2 (M_A^{-1} \delta^r E_h^n + \omega^2 M_A^{-1} E_h^n, \delta^r D_h^n) \right. \\
&\left. + \tau (M_C \delta^r D_h^n, \delta^r E_h^n) + \varepsilon_0 \lambda^2 (M_A^{-1} \delta^r E_h^n, \delta^r D_h^n) \right].
\end{align}

Then, we just need to bound the RHS terms of (109) and use the lemma. 4.1 to finish the proof. By using the following two inequalities and estimating the RHS terms one by one:

\begin{align*}
2ab \leq a^2 + b^2, \quad \left(\frac{a + b}{2} \right)^2 \leq \frac{1}{2} (a + b)^2,
\end{align*}

we obtain the following four estimates:

\begin{align}
\sum_{n=1}^{m} 2 \tau \varepsilon_0 \lambda^2 (M_A^{-1} \delta^r E_h^n, \delta^r D_h^n) &\leq \sum_{n=1}^{m} 2 \tau \varepsilon_0 \lambda^2 \| M_A^{-\frac{1}{2}} \| \| M_A^{-\frac{1}{2}} \delta^r E_h^n \| \| M_C^\frac{1}{2} D_h^{n+\frac{1}{2}} + D_h^{n-\frac{1}{2}} \| \\
&\leq \tau \sqrt{\varepsilon_0 \lambda^2} \| M_A^{-\frac{1}{2}} \| \sum_{n=1}^{m} \left(\varepsilon_0 \lambda^2 \| M_A^{-\frac{1}{2}} \delta^r E_h^n \|^2 + \frac{1}{2} (\| \delta^r D_h^{n+\frac{1}{2}} \|^2 + \| \delta^r D_h^{n-\frac{1}{2}} \|^2) \right),
\end{align}
\[
\sum_{n=1}^{m} 2\tau\varepsilon_0\lambda_2\omega_p^2 (M_A^{-\frac{1}{2}}E_h^n, \delta, D_h^n)
\]
\[
\leq \sum_{n=1}^{m} 2\tau\varepsilon_0\lambda_2\omega_p^2 \|M_A^{-\frac{1}{2}}\| M_A^{-\frac{1}{2}} \frac{1}{2}(E_{h}^{n+1} + E_{h}^{n-1}) \| \| \frac{1}{2}\delta_{r}(D_h^{n+\frac{1}{2}} + D_h^{n-\frac{1}{2}}) \|
\]
\[
\leq \tau \sqrt{\varepsilon_0\lambda_2} \|M_A^{-\frac{1}{2}}\| \sum_{n=1}^{m} 2\sqrt{\varepsilon_0\lambda_2}\omega_p^2 \frac{1}{2}(M_A^{-\frac{1}{2}}E_{h}^{n+1} + M_A^{-\frac{1}{2}}E_{h}^{n-1}) \| \cdot \| \frac{1}{2}\delta_{r}(D_h^{n+\frac{1}{2}} + D_h^{n-\frac{1}{2}}) \|
\]
\[
\leq \tau \sqrt{\varepsilon_0\lambda_2} \|M_A^{-\frac{1}{2}}\| \sum_{n=1}^{m} \left(\frac{\varepsilon_0\lambda_2\omega_p^2}{2}(\|M_A^{-\frac{1}{2}}E_{h}^{n+1}\|^2 + \|M_A^{-\frac{1}{2}}E_{h}^{n-1}\|^2) + \frac{1}{2}(\|\delta_{r}D_h^{n+\frac{1}{2}}\|^2 + \|\delta_{r}D_h^{n-\frac{1}{2}}\|^2) \right),
\]
(111)

\[
\sum_{n=1}^{m} 2\tau(M_C\delta_{r}D_h^{n-\frac{1}{2}}, \delta_{r}^2E_h^{n-\frac{1}{2}}) = \sum_{n=1}^{m} 2\tau \left(M_A^{-1}M_B \cdot \frac{1}{2}\delta_{r}(D_h^{n+\frac{1}{2}} + D_h^{n-\frac{1}{2}}), \frac{1}{2}\delta_{r}^2(E_{h}^{n+1} + E_{h}^{n-1}) \right)
\]
\[
\leq \sum_{n=1}^{m} \tau \|M_A^{-\frac{1}{2}}M_B\| \cdot \frac{1}{2}\|\delta_{r}(D_h^{n+\frac{1}{2}} + D_h^{n-\frac{1}{2}})\| \cdot \sqrt{\varepsilon_0\lambda_2} \|M_A^{-\frac{1}{2}}\| \frac{1}{2}\delta_{r}(E_{h}^{n+1} + E_{h}^{n-1}) \|
\]
\[
\leq \tau \frac{\|M_A^{-\frac{1}{2}}M_B\|}{\sqrt{\varepsilon_0\lambda_2}} \sum_{n=1}^{m} \frac{1}{2}(\|\delta_{r}D_h^{n+\frac{1}{2}}\|^2 + \|\delta_{r}D_h^{n-\frac{1}{2}}\|^2) + \frac{\varepsilon_0\lambda_2}{2}(\|M_A^{-\frac{1}{2}}\delta_{r}E_h^{n+1}\|^2 + \|M_A^{-\frac{1}{2}}\delta_{r}E_h^{n-1}\|^2),
\]
(112)

and

\[
\sum_{n=1}^{m} 2\tau\omega_p^2 (M_C\delta_{r}D_h^{n}, \delta_{r}E_h^n) = \sum_{n=1}^{m} 2\tau\omega_p^2 \left(M_C^{-\frac{1}{2}}(D_h^{n+1} + D_h^{n-1}), M_C^{-\frac{1}{2}}M_A^{-\frac{1}{2}}\frac{1}{2}\delta_{r}(E_{h}^{n+\frac{1}{2}} + E_{h}^{n-\frac{1}{2}}) \right)
\]
\[
\leq \frac{\tau\omega_p\|M_C^{-\frac{1}{2}}M_A^{-\frac{1}{2}}\|}{\sqrt{\varepsilon_0\lambda_2}} \sum_{n=1}^{m} 2\|M_C^{-\frac{1}{2}}(D_h^{n+1} + D_h^{n-1})\| \cdot \sqrt{\varepsilon_0\lambda_2}\omega_p\|M_A^{-\frac{1}{2}}\| \frac{1}{2}\delta_{r}(E_{h}^{n+\frac{1}{2}} + E_{h}^{n-\frac{1}{2}}) \|
\]
\[
\leq \frac{\tau\omega_p\|M_C^{-\frac{1}{2}}M_A^{-\frac{1}{2}}\|}{\sqrt{\varepsilon_0\lambda_2}} \sum_{n=1}^{m} \frac{1}{2}(\|M_C^{-\frac{1}{2}}D_h^{n+1}\|^2 + \|M_C^{-\frac{1}{2}}D_h^{n-1}\|^2) + \frac{\varepsilon_0\lambda_2\omega_p^2}{2}(\|M_A^{-\frac{1}{2}}\delta_{r}E_h^{n+\frac{1}{2}}\|^2 + \|M_A^{-\frac{1}{2}}\delta_{r}E_h^{n-\frac{1}{2}}\|^2)
\]
(113)

Substituting (110)-(113) into (109), and choosing the time step \(\tau\) to make the coefficients of \(\|M_C^{-\frac{1}{2}}D_h^{n+1}\|, \|\delta_{r}D_h^{n+\frac{1}{2}}\|, \|M_C^{-\frac{1}{2}}E_h^{n+1}\|, \|M_A^{-\frac{1}{2}}\delta_{r}E_h^{n+\frac{1}{2}}\|\), on the LHS smaller than those on the RHS:

\[
\frac{\tau\omega_p\|M_C^{-\frac{1}{2}}M_A^{-\frac{1}{2}}\|}{2\sqrt{\varepsilon_0\lambda_2}} \leq \frac{1}{2}, \quad \tau \sqrt{\varepsilon_0\lambda_2} \|M_A^{-\frac{1}{2}}\| + \tau \|M_C^{-\frac{1}{2}}M_B\| \leq 1, \quad \tau \sqrt{\varepsilon_0\lambda_2} \|M_A^{-\frac{1}{2}}\| \leq 1, \quad \frac{\tau\omega_p\|M_C^{-\frac{1}{2}}M_A^{-\frac{1}{2}}\|}{\sqrt{\varepsilon_0\lambda_2}} \leq 3,
\]
which is equivalent to (90). Finally by applying the discrete Gronwall inequality given in lemma.4.1, we finish the proof.
5 Numerical results

In this section, we present two accuracy tests of the leap-frog DG methods (79)-(82) on the rectangular mesh and unstructured mesh, to verify the proved convergence results. Additionally, some numerical simulations of the cloaking phenomenon will be shown.

5.1 The error table on triangular meshes

We use the model in [34, Sect. 5] to test the convergence rate of our model:

\[\partial_t D_x = \frac{\partial H}{\partial y}, \]
\[\partial_t D_y = -\frac{\partial H}{\partial x}, \]
\[\varepsilon_0 \lambda_2 (M_A^{-1} \partial_x E + \omega_p^2 M_A^{-1} E) = \partial_t D + M_C D + f(t_n), \]
\[\mu_0 \mu \partial_t H = -\nabla \times E, \]

where the source term \(f \) is

\[f(x, y, t) = \varepsilon_0 \lambda_2 (M_A^{-1} \partial_x E + \omega_p^2 M_A^{-1} E) - \partial_t D - M_C D. \]

The model has exact solutions

\[E_x(x, y, t) = \cos(\omega x) \sin(\omega y) e^{-\omega f t}, \]
\[E_y(x, y, t) = -\sin(\omega x) \cos(\omega y) e^{-\omega f t}, \]
\[D_x(x, y, t) = \frac{-2\omega}{\mu_0 \mu \omega_f^2} \cos(\omega x) \sin(\omega y) e^{-\omega f t}, \]
\[D_y(x, y, t) = \frac{-2\omega}{\mu_0 \mu \omega_f^2} (-\sin(\omega x) \cos(\omega y)) e^{-\omega f t}, \]
\[H(x, y, t) = \frac{-2\omega}{\mu_0 \mu \omega_f} \cos(\omega x) \cos(\omega y) e^{-\omega f t}. \]

We use the unit square as our physical domain, which is partitioned by the triangular mesh. Fig. 2 shows a sample coarse mesh.

We couple the leap-frog time discretization with the second and third order DG methods, and apply the alternating fluxes and the PEC boundary conditions (83)-(88) to solve the model. The physical parameters in the test are chosen as:

\[H_1 = 0.05, \quad H_2 = 0.2, \quad d = 0.2, \quad \varepsilon_0 = \mu_0 = \pi, \quad \mu = 4\pi, \quad T = 0.1. \]

The time step is chosen as \(\tau = 0.01h \) for the second order DG method, and \(\tau = 0.01h^2 \) for the third order DG method, where \(h \) is the mesh size. The \(L_2 \) errors and the corresponding convergence rates of \(\|E_h^{n+1} - E(t_{n+1})\|, \|D_h^{n+1} - D(t_{n+1})\|, \) and \(\|H_h^{n+\frac{1}{2}} - H(t_{n+\frac{1}{2}})\| \) are shown in Table 1.

We observe the sub-optimal convergence rates of \(O(h^p) \) in the \(L^2 \) norm, which is consistent with Theorem 3.2.
Figure 2: Sample mesh for the unit region.

Table 1: L_2 errors and orders obtained the DG method for E,D, and H on the unstructured mesh.

<table>
<thead>
<tr>
<th>Level of refinement</th>
<th>E error</th>
<th>order</th>
<th>D error</th>
<th>order</th>
<th>H error</th>
<th>order</th>
</tr>
</thead>
<tbody>
<tr>
<td>k=1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1.15 E-01</td>
<td></td>
<td>5.31 E-01</td>
<td></td>
<td>9.91 E-02</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>4.17 E-02</td>
<td>1.29</td>
<td>2.09 E-01</td>
<td>1.34</td>
<td>3.06 E-02</td>
<td>1.69</td>
</tr>
<tr>
<td>3</td>
<td>1.38 E-02</td>
<td>1.77</td>
<td>5.98 E-02</td>
<td>1.80</td>
<td>1.33 E-02</td>
<td>1.19</td>
</tr>
<tr>
<td>4</td>
<td>4.67 E-03</td>
<td>1.56</td>
<td>1.88 E-02</td>
<td>1.66</td>
<td>2.49 E-03</td>
<td>2.42</td>
</tr>
<tr>
<td>5</td>
<td>2.24 E-03</td>
<td>1.05</td>
<td>8.69 E-03</td>
<td>1.11</td>
<td>6.63 E-04</td>
<td>1.91</td>
</tr>
<tr>
<td>k=2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2.66 E-02</td>
<td></td>
<td>1.21 E-01</td>
<td></td>
<td>1.99 E-02</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>4.60 E-03</td>
<td>2.53</td>
<td>2.07 E-02</td>
<td>2.54</td>
<td>3.49 E-03</td>
<td>2.51</td>
</tr>
<tr>
<td>3</td>
<td>7.31 E-04</td>
<td>2.65</td>
<td>3.11 E-03</td>
<td>2.73</td>
<td>4.71 E-04</td>
<td>2.88</td>
</tr>
<tr>
<td>4</td>
<td>1.27 E-04</td>
<td>2.51</td>
<td>4.90 E-04</td>
<td>2.66</td>
<td>6.68 E-05</td>
<td>2.82</td>
</tr>
<tr>
<td>5</td>
<td>2.82 E-05</td>
<td>2.17</td>
<td>1.5 E-04</td>
<td>2.21</td>
<td>9.10 E-06</td>
<td>2.87</td>
</tr>
</tbody>
</table>
Table 2: L_2 errors and orders obtained from the leap-frog DG method for E,D, and H on the rectangular mesh.

<table>
<thead>
<tr>
<th># cells</th>
<th>E error</th>
<th>order</th>
<th>D error</th>
<th>order</th>
<th>H error</th>
<th>order</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 \times 10</td>
<td>1.38 E-02</td>
<td>8.98 E-02</td>
<td>1.38 E-02</td>
<td>6.57 E-03</td>
<td>1.97</td>
<td></td>
</tr>
<tr>
<td>20 \times 20</td>
<td>3.40 E-03</td>
<td>1.95</td>
<td>2.26 E-02</td>
<td>1.96</td>
<td>3.40 E-03</td>
<td>1.95</td>
</tr>
<tr>
<td>40 \times 40</td>
<td>8.67 E-04</td>
<td>1.97</td>
<td>5.73 E-03</td>
<td>1.98</td>
<td>8.67 E-04</td>
<td>1.97</td>
</tr>
<tr>
<td>80 \times 80</td>
<td>2.18 E-04</td>
<td>1.99</td>
<td>1.43 E-03</td>
<td>1.99</td>
<td>2.18 E-04</td>
<td>1.99</td>
</tr>
<tr>
<td>160 \times 160</td>
<td>5.47 E-05</td>
<td>2.00</td>
<td>3.60 E-04</td>
<td>1.99</td>
<td>5.47 E-05</td>
<td>2.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th># cells</th>
<th>E error</th>
<th>order</th>
<th>D error</th>
<th>order</th>
<th>H error</th>
<th>order</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 \times 10</td>
<td>7.93 E-03</td>
<td>2.18 E-02</td>
<td>6.57 E-03</td>
<td>1.97</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20 \times 20</td>
<td>9.85 E-04</td>
<td>3.00</td>
<td>2.75 E-03</td>
<td>2.98</td>
<td>8.41 E-04</td>
<td>2.96</td>
</tr>
<tr>
<td>40 \times 40</td>
<td>1.22 E-04</td>
<td>3.01</td>
<td>3.47 E-04</td>
<td>2.98</td>
<td>1.10 E-04</td>
<td>2.97</td>
</tr>
<tr>
<td>80 \times 80</td>
<td>1.52 E-05</td>
<td>3.00</td>
<td>4.33 E-05</td>
<td>2.99</td>
<td>1.37 E-05</td>
<td>3.01</td>
</tr>
<tr>
<td>160 \times 160</td>
<td>1.90 E-06</td>
<td>3.00</td>
<td>5.42 E-06</td>
<td>2.99</td>
<td>1.71 E-06</td>
<td>3.00</td>
</tr>
</tbody>
</table>

5.2 The error table on rectangular meshes

Next, we partition the unit square domain with the rectangular mesh, and apply the alternating fluxes with additional jump terms on the PEC boundary conditions (54)-(61) to simulate the model (114)-(117). To achieve the optimal order of convergence, we set the initial conditions as:

$$E_{xh}(0) = \Pi_1 E_x(0), \quad E_{yh}(0) = \Pi_2 E_y(0), \quad D_{xh}(0) = \Pi_4 D_x(0), \quad D_{yh}(0) = \Pi_4 D_y(0), \quad H_h(0) = \Pi_3 H(0).$$

Table 2 shows the L^2 errors and the convergence rates in this case. As proved in Theorem 3.3, the optimal order of accuracy is obtained.

5.3 The wave propagation cross the cloaking region

To see the invisibility cloaking phenomenon, we test our leap-frog DG scheme on Example 2 in [34], where the physical domain is $[-0.6, 0.6] m \times [0, 0.6] m$, and the physical parameters for the simulation are

$$H_1 = 0.1 m, \quad H_2 = 0.4 m, \quad d = 0.4 m, \quad \tau = 1 e - 13 s.$$

The domain is partitioned by the unstructured triangular mesh with mesh size $h = 0.01 m$, and it is surrounded by a perfectly matched layer (PML) of thickness $15 h$ to absorb outgoing waves. In this paper, we use the classical 2D Berenger PML, whose governing equations are [30]:

$$\epsilon_0 \partial_t E + \begin{pmatrix} \sigma_y & 0 \\ 0 & \sigma_x \end{pmatrix} E = \nabla \times H_z, \quad (124)$$

25
\[\mu_0 \partial_t H_{zx} + \sigma_{mx} H_{zx} = -\frac{\partial E_y}{\partial x}, \tag{125} \]

\[\mu_0 \partial_t H_{zy} + \sigma_{my} H_{zy} = \frac{\partial E_x}{\partial y}, \tag{126} \]

where \(H_z = H_{zx} + H_{zy} \) represents the magnetic field, and we denote the parameters \(\sigma_i \) and \(\sigma_{m,i} \), \(i = x, y \) as the electric and the magnetic conductivities in the \(x \)- and \(y \)- directions respectively.

In the domain, an incident Gaussian wave

\[H(x, y, t) = \sin(2\pi f) \exp\left(-\frac{|x - x_c|^2}{L^2}\right) \]

is imposed along a line segment with endpoints \((-d, d/2)\) and \((-d/2, d)\). We set the frequency \(f = 2\text{GHz} \), \(L = 0.25\sqrt{2}d \), and \(x_c = (-3d/4, 3d/4) \), where \(x = (x, y) \) is an arbitrary point on the segment. The Fig. 3 shows that the computational domain is wrapped by the green PML region. The red quadrilateral region represents the cloaking region, where the carpet cloak model (1-4) is solved. The rest blue region is vacuum, where the standard Maxwell equation is solved. The numerical magnetic field \(H \) at different time steps are shown in Fig. 4, and it can be observed that the wave looks like the one reflecting from the flat ground, and the the hidden region is invisible to the observers at the far end.

Figure 3: The computational domain for Examples 5.3 and 5.4.

For the comparison, the simulation of the magnetic field \(H \) without the cloaking material is presented in Fig. 5, and the cloak phenomenon disappears in this case.
Figure 4: Example 5.3 (with metamaterial). The magnetic field H obtained at 12000, 24000, 40000, and 50000 time steps (oriented counterclockwise).

Figure 5: Example 5.3 (without metamaterial). The magnetic field H obtained at 12000, 24000, 40000, and 50000 time steps (oriented counterclockwise).
5.4 The wave propagation with a vertical incident wave source

We repeat Example 5.2, and substitute the incident Gaussian wave to a vertical source wave
\[H(x, y, t) = 0.1 \sin(2\pi f) \] with the frequency \(f = 2\text{GHz} \) on edge \(x = -0.6\text{m} \). The numerical solutions of \(H \) at each time step are shown in Fig. 6. This result shows that the plane wave pattern is perfectly recovered after passing through the cloaking region, and we conclude that the cloaking phenomenon is also achieved in this case.

![Figure 6: Example 5.4. The magnetic field \(H \) obtained at 12000, 24000, 40000, and 50000 time steps (oriented counterclockwise).](image)

6 Conclusion

In this paper, we develop the leap-frog DG scheme for solving the time-domain carpet cloak model. We prove the stability and the sub-optimal order of convergence for the semi-discrete scheme on triangular meshes, and the optimal order of convergence on rectangular meshes with tensor-product DG spaces. Then, the conditional stability for the fully-discrete scheme with the time step constraint \(\tau = O(h) \) is proved. Numerically, the sub-optimal convergence rate on unstructured meshes and the optimal convergence rate on rectangular meshes with tensor-product DG spaces are verified in the error accuracy tests. Moreover, simulations of wave propagation in the carpet cloak region are presented.

References

