T2 Analysis - Quick Reference

1. Setup and obtain a 1-D proton spectrum. Optimize your SW and o1p and AQ. Rerun your experiment with the new values. Record the values.

2. NOTE: T2* values can be estimated from the linewidth at half-max of the resonance in question. To do this, perform peak picking on the expanded area of your peak of interest (select the option to only do peak picking on the expanded area). After it labels your peak, type hwcal in the command window the peak width at ½ max should be displayed in Hz = 1/s. T2* = 1/π*width in seconds.

3. Type edc [enter] and change the experiment number to 2 (or type iexpno [enter]). Type rpar [enter] and select T2_BROWN, copy all. Type ‘eda’ [enter] and change the values of sw, o1p and AQ to those you recorded from exp 1. Select the proper solvent and click the little blue test tube ‘prosol’ button. This is not a 2-D experiment, but it is set up in 2-D mode as it is an array of 10 different experiments. Each experiment uses a different # of spin echoes, read from the default vc list, t2delay (should be even # of entries). To view the default values, type ‘edlist’ [enter] and select vc and then t2delay. You may need to generate your own vclist if the default list does not afford you a reasonable fit when calculating T2. To generate your own vclist, type edlist, select vc, a list of vc files will pop up, type in a new filename in the window in the bottom, and an editor window will pop up. Click in the bottom section of the window and type in your vclist. The value in this list is not the amount of time, but the number of echoes in the train (be sure you use even numbers here). Be sure to write down how many entries are in your list, as well as the name of your list. In the eda window, you will need to put your filename in the vdlist window, and the number of entries in your vclist is the value that goes in the td box of F1. Type D20 3ms [enter]. Type rga [enter] and then zg [enter] when rga is finished.

4. When the acquisition is finished, type ‘xf2’ [enter]. Type vectovd which will convert the echoes to time. Several boxes will pop up. Just click ok. Increase the intensity until you see intensity form at the bottom of the screen at the chemical shifts of your spectrum (see figure). Click the phase button. Right mouse click on one of the signals in your spectrum and select ‘add’. Next click on the horizontal arrow with the R over it. Your spectrum should appear. Phase it and save it. Type ‘abs2’ [enter]. Select ‘T1/T2 Relaxation’ from the ‘Analysis’ pull down menu at the top of the screen. Select ‘Extract Slice’ [enter], ‘Spectrum’ [enter], ‘Slice #1’ [OK]. Your spectrum should appear and it should be phased. Select ‘Define Ranges’ in the relaxation module and click [OK] to the pop-up box. Use the normal expansion tool to expand around each of the peaks you wish to analyze. Next, click the little bracket tool to select a region in each of your
resonances of interest. NOTE: If your peaks have intensity going below the baseline on the edges, do not include that part of the peak when selecting the regions. When all of your resonances are selected, click the disc button and choose ‘Export …’ (See Figure).

5. Click the Relaxation window icon. The relaxation parameters screen may pop up. If so, make sure that under ‘Fitting Function’ that the type is **uxmnrt2**, and that the list name is **vclist**. If you notice it says T1 data instead of T2, click the little white icon with the check marks (see figure) to launch the parameters and change the values aforementioned. Click ‘OK’. Click the icon to calculate the T2 of all the resonances you selected. The default mode is ‘**area**’. You can try ‘**intensity**’ as well. The data should be close either way. Click the + or – to scroll through the different curves. You want the curves to look like a smooth decay. Click the ‘Display Report’ icon and you will see a tabulated data table for each of your resonances that you can print if you wish. Obviously if your curves look bad, you will need to run the experiment again with an edited vclist.

Examples of good curves and bad curves.

A – Delays would not be long enough
B – Delays would be too long.
C – Delays would ideal.