Sc.M. Degree

Demand for advanced expertise in biostatistics continues to be high in both the public and private sectors, particularly in settings emphasizing research in public health, clinical medicine, the biological sciences, biomedicine and biotechnology. Brown’s Master’s degree in Biostatistics educates students to become statisticians trained to work in modern data science environments with expertise in theory and methods of statistical inference and modeling, knowledge and experience with tools of data science, and a well-developed skill set in computer programming, strong communication skills and experience working collaboratively. The Master of Science degree program requires both coursework and a Master’s thesis or project.

  • Use probabilistic and statistical concepts and methods to describe and draw inferences from biomedical data.
  • Apply appropriate statistical methods to analyze data of different types and structures.
  • Prepare reports of methods, results, and interpretations from a simulation that investigates the properties of a statistical method.
  • Perform power analysis and sample size calculations to determine the required number of subjects to carry out scientific studies.
  • Use statistical software for data management, implementation of comprehensive statistical analysis, and presentation of results.
  • Write reports of comprehensive and novel statistical analysis of public health data.

Entering students are assumed to have the necessary mathematical background including three semesters of calculus, one semester of linear algebra and at least one semester of mathematical probability using calculus prior to attending Brown. Students who have not taken the probability course will be strongly urged to take this in the summer before matriculation.  

The Master of Science degree in Biostatistics requires 10 courses (7 required and 3 elective) in biostatistics, in addition to the mandatory PHP 101 Public Health (a multi-module, online introduction to public health course required by all School of Public Health students).  The Program’s biostatistics sequence is configured as 3-3-2-2 and must be followed for this degree program. The specifics are as follows:

Required Courses - Sc.M. (7 biostatistics plus PHP 0101)

PHP 2515  Fundamentals of Probability & Statistical Inference OR PHP 2520 Inference I
PHP 2514 Applied Generalized Linear Models
PHP 2516 Applied Longitudinal Models (½ Course)
PHP 2517 Applied Multilevel Models (½ Course)
PHP 2550 Practical Data Analysis
PHP 2560 Statistical Programming with R
PHP 2610 Causal Inference & Missing Data
PHP 2650 Statistical Learning/Big Data
PHP 0101 Scope of Public Health (online course)

Elective Courses (choose 3)

Statistical Electives:
PHP 2030 Clinical Trials Methodology
PHP 2530 Bayesian Statistical Methods
PHP 2580 Statistical Inference II
PHP 2601 Linear Models
PHP 2602 Analysis of Lifetime Data
PHP 2605 Generalized Linear Models
PHP 2620 Statistical Methods for Bioinformatics
PHP 2980: Graduate Independent Study & Thesis Research
Epidemiology Electives:
PHP 2120 Introduction to Methods in Epidemiologic Research
PHP 2150 Foundation in Epidemiologic Research Methods
PHP 2200 Intermediate Epidemiologic Methods
Programming and Data Science Electives:
PHP  2561 Methods in Informatics and Data Science for Health
CSCI 1420 Machine Learning
CSCI 1470 Deep Learning
CSCI 1570 Design and Analysis of Algorithms
CSCI 1810 Computational and Molecular Biology
CSCI 1820 Algorithmic Foundations in Computational Biology

For a full list of classes that the Department of Biostatistics offers please visit our Courses page.


The requirements for the Sc.M. program include the coursework listed above PLUS a Master’s thesis or project. Students may choose to do their thesis for credit using PHP 2980 as one of their electives or may choose to do the thesis without credit while using their 3 electives for coursework. It is also possible to use PHP2980 as an independent study unrelated to the thesis.     

All students in the program will be required to write a project/thesis on a topic in one of the following areas: development of a new analytic method, detailed study of an existing method or comparison of performance of different methods (e.g. simulation studies); development of new software packages for statistical programming including a published repository, documentation and vignettes; or review or synthesis of a new or emerging statistical methodology or application.

All projects and thesis will require a significant amount of work and a written document. A thesis must follow the Brown Graduate School Guidelines and be published in this manner. Projects allow for students to engage in work that is just as rigorous but is not sufficient for submission for publication. For example, many students might be involved in preliminary analysis of clinical trials or other data which they are not allowed to publish at the time of the graduate school deadline. Or, the work may be a detailed analysis of data that forms part of a larger, publishable work.

Students should choose a thesis/project advisor from the Biostatistics faculty by the end of their first year. This advisor may also serve as the student’s academic advisor if both agree. In addition to a faculty advisor, the thesis/project requires one reader who will also sign off on the finished product. The reader does not need to be a Biostatistics faculty member, but could be an outside Brown faculty member, faculty from another institution, or a scientist with whom the student is working on the project/thesis. For example, the student might develop a project out of work being done through an internship at a hospital and might have the clinical supervisor serve as the reader.

In response to the National Institutes of Health (NIH) notice NOT-OD-13-093 and the Brown University School of Public Health mandate regarding the use of Individual Development Plans (IDP), all students in the Department of Biostatistics, regardless of funding sources, are required to complete and submit, in consultation with their advisor, and IDP. Specifically:

  • Incoming, matriculating students must complete an IDP, in consultation with their advisor, by the beginning of their second semester.  
  • All students must submit an updated IDP, in consultation with their advisor, on an annual basis.  

The IDP is a valuable tool that gives students the opportunity to consider and address their short-term and long-term career goals.  In order to achieve compliance with the IDP policy, please fill out the Individual Development Plan for Biostatistics, discuss with your advisor, and submit your completed form.