Students

2022-2023 Therapeutic Sciences Graduate Students

 

TSGP group.jpg

  • Blessing Akobundu

    Tapinos Lab

    Research

    My current project is focused on understanding the role(s) of special class of RNAs called enhancer RNAs (eRNAs) in the modulation of gene expression in stem and differentiated glioblastoma primary cells.

  • Lab Rotation

  • Helen Belato

    Lisi Lab

    Research

    Here's my updated research description: With the overarching goal of achieving spatial and temporal control of the CRISPR-Cas9 biotechnology, my research involves understanding the structural and intrinsic dynamic properties of Cas9 with atomic level resolution using nuclear magnetic resonance (NMR) as my main technique.

  • Fawzi Lab

    Research

    I am interested in studying the atomic detail of small chemical and environmental changes to aggregation-prone proteins, including huntingtin, MAPT, and Sup35.

  • Morrison Lab

    Research

    In the Morrison laboratory, we study the role of macrophage inflammation in vascular calcification. The primary goal of our laboratory is to define a critical pathway by which inflammatory macrophage signaling modulates atherosclerosis and calcification.

  • Lawler Lab

    Research

    I am currently investigating the effects of drugs on chemosensitivity and blood brain barrier permeability for treatment of Diffuse Intrinsic Pontine Glioma(DIPG). DIPG is a highly invasive pediatric brain tumor that affects children with a median age of 6-7 years old. There are currently no therapies that target invasion and a major obstacle for treatment is the blood brain barrier(BBB) which prevents the delivery of effective concentrations of drug into the brain. In the Lawler lab, we are working to provide a potential new therapeutic approach for the treatment of DIPG blocking invasion and enhancing drug delivery across the BBB.

  • O'Connor-Giles Lab

    Research

    My research focuses on a newly identified regulator of synaptic growth and function, TRMT9B. I’m using genetic, transcriptomic and biochemical approaches in Drosophila to explore how TRMT9B promotes nervous system development and function, with a focus on its role in stress resistance.

  • Tapinos Lab

    Research

    My research consists of identifying a novel, epitranscriptomic treatment for pediatric tumors called diffuse intrinsic pontine glioma.

  • Morgan Lab

    Research

    I am interested in studying the extracellular matrix, particularly the synthesis of collagen under various conditions, and correlating biochemical changes with biomechanics in an in vitro 3D model.

  • Toussaint & Dawson Labs

    Research

    My research focuses on studying the role of senescence in pulmonary fibrosis extracellular matrix remodeling using nonlinear optical microscopy.

  • Fawzi Lab

    Research

    I am interested in understanding the mechanisms of interaction and RNA granule association of TDP-43, an intrinsically disordered protein associated with several neurodegenerative diseases including ALS, frontotemporal dementia and Alzheimer’s Disease. More specifically, I use biophysical and biochemical techniques like NMR spectroscopy to study how structure and disease mutations in TDP-43 affect phase separation and aggregation.

  • Zhou Lab

    Research

    Vascular remodeling is a prominent phenotype of Pulmonary Hypertension (PH), a deadly condition with unknown causes and no known treatment. Using in vivo models of pulmonary vascular disease, our lab has identified CHI3L1 and its receptors as major contributors of PH responses. My goal is to study the mechanisms that underlie vascular remodeling in PH and develop nanoparticle-based drug delivery systems against CHI3L1 and its receptors to treat vascular remodeling in PH.

     

  • Dubielecka-Szczerba Lab

    Research

    My focus is elucidating the role of the complement cascade in myeloproliferative neoplasms (MPNs), a class of rare blood cancers. I'm interested in how dysregulation of the complement cascade contributes to the inflammatory processes underlying the progression of MPNs.

  • Dubielecka-Szczerba Lab

    Research

    I use proximity dependent labeling to characterize malignant signaling and identify new therapeutic targets in blood producing stem cells of myeloid blood cancers.

  • Abdelfattah Lab

    Research

    I engineer proteins to serve as genetically encoded fluorescent sensors for studying the physiology and pharmacology of the brain. My projects include developing a new generation of genetically encoded voltage sensors, neuropeptide and neurotransmitter sensors, and a protein based gene delivery system for studying neural networks.

  • Oancea Lab

    Research

    Uveal melanoma (UM) is a rare and aggressive ocular malignancy resulting from the cellular transformation of uveal melanocytes. The molecular mechanisms underlying uveal melanocyte transformation and the progression of UM are not known. My research focuses on defining the signaling pathways, particularly those mediated by G-protein-coupled receptors, that may mediate such processes through the use of biochemistry, live cell imaging, and transcriptomics techniques. 

  • Tapinos Lab

    Research

    My research focuses on developing an innovative therapy for glioblastoma (GBM) called "GliaTrap" - a modality to attract and trap migrating glioblastoma stem cells (GSC) that invade the brain parenchyma. These invading GSCs make current therapies ineffective and lead to a relapse and eventually to inevitable death. In order to develop an effective and safe therapy for GBM, I'm investigating the mechanisms of GSC migration and proliferation by utilizing molecular biology, imaging, engineering, and multi-omics/bioinformatics approaches. 

  • Lab Rotation

  • Aizenman Lab

    Research

    Atypical sensory perception is common throughout neurodevelopment disorders (NDDs) and can negatively impact cognitive processes that rely on the integration of information from multiple sensory modalities. The focus of my research is to draw comparisons in visual circuit development, synaptic plasticity, and multi-sensory integration between normal and NDD conditions by probing nervous system function of Xenopus tadpoles using electrophysiology and in vivo imaging, which will help improve the current understanding of how abnormal circuitry arises in the context of NDD. 

  • Lab Rotation

  • Fawzi Lab

    Research

    My research focuses on understanding the role of Intrinsically Disordered Proteins in neurodegenerative diseases, and characterizing the structural and residue specific contributions to complex assemblies such as biomolecular condensates.

  • Lab Rotation