PROVIDENCE, R.I. [Brown University] — When it comes to space satellites, getting the math wrong can be catastrophic for an object in orbit, potentially leading to its abrupt or fiery demise. In this case, however, the fiery end was cause for celebration.
About five years ahead of schedule, a small cube satellite designed and built by Brown University students to demonstrate a practical, low-cost method to cut down on space debris reentered Earth’s atmosphere sometime on Tuesday, Aug. 8 or immediately after — burning up high above Turkey after 445 days in orbit, according to its last tracked location from U.S. Space Command.
Called SBUDNIC, the satellite was built on a shoestring budget using off-the-shelf supplies available at most hardware stores, including 48 Energizer AA batteries. The students that built it were an academically diverse team of undergraduates led by Brown alumnus Marco Cross and Brown faculty member Rick Fleeter.
SBUDNIC was blasted into space on Elon Musk’s SpaceX rocket last May as part of the Transporter 5 ridesharing mission and was designed to tackle the growing issue of space junk. For that purpose, the students added a key feature to the bread-loaf-sized cube satellite: a plastic drag sail made from Kapton polyimide.
The sail popped open like an umbrella upon deployment at about 520 kilometers, well above the orbit of the International Space Station, and helped push the satellite back down to Earth quicker than anticipated.
“We were trying to prove that there are ways of deorbiting space junk after mission life has ended that are not super costly,” said Selia Jindal, who graduated from Brown in May and was one of the project leads. “This showed that we can do that. We were successfully able to deorbit our satellite so that it’s no longer taking up space in Earth’s orbit. More importantly, the project really helped show there are significant plans we can put in place to combat the space junk problem that are cost effective.”
The successful proof of concept could have far-ranging impacts on efforts to cut down on space debris, which poses a potential danger to all current and future space vehicles. This is especially poignant considering the total cost of the student-designed cube satellite — about $10,000.
“There are companies that are trying to solve this problem of space junk with concepts like space tow trucks or nets in space that will capture space junk and take them out of orbit,” said Dheraj Ganjikunta, who graduated from Brown in 2022 and was SBUDNIC’s lead program manager. “What’s amazing about SBUDNIC is that it’s magnitudes less cost than any of those solutions. Rather than taking junk out of space as it after it becomes a problem, we have this $30 drag device you can just throw onto satellites and radically reduce how long they’re in space.”