PROVIDENCE, R.I. [Brown University] — Proposals to create a national gun registry have long been met with fierce opposition from gun rights advocates. While proponents say a registry would help in tracking guns used in crimes, opponents worry that it would compromise privacy and could be used by the federal government to confiscate firearms. Now, a team of Brown University computer scientists has devised a way of implementing a registry that may allay some of those concerns.
They propose a database that uses advanced encryption to protect privacy. The encryption scheme allows the database to be searched without being decrypted, which means people querying the database see only the records they’re looking for and nothing else. Meanwhile, the system places control of data in the hands of county-level officials rather than the federal government, meaning county officials have control over which queries are answered, and can even pull the county’s data offline entirely if they’re not comfortable with how it’s being used.
The proposed system is the work of Seny Kamara, a professor of computer science at Brown, along with co-authors Tarik Moataz, Andrew Park and Lucy Qin. Moataz is a visiting scientist at Brown. Park is a Brown master’s student, and Qin is a Ph.D. student in Kamara’s lab. They developed the system after Ron Wyden, a U.S. Senator from Oregon, contacted them looking for ideas on how such a database might be constructed.
“The senator’s office had this idea for a database where counties are incentivized to participate, but they could pull out at any time,” Kamara said. “At the same time, there are obvious privacy concerns. This idea of being able to query and process data without decrypting it is something I have worked on for the last 20 years, so that’s why the senator reached out to us. This research was about showing whether it was possible to design something like this.”
The study, which was accepted to the IEEE Symposium on Security and Privacy and will be presented in May, concludes that such a system is not only possible, but quite practical.